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Abstract 
 
 

Tunable laser sources in the 2-4 µm spectral range are required for several Air Force 

sensor applications, yet choices are few in that spectral region, and no truly satisfactory 

source has yet been found for all applications. Additional source alternatives are needed 

in addition to the existing rare-earth lasers and non-linear optical sources. Chromium-

doped II-VI (Cr2+:II-VI) materials, a new and relatively undeveloped class of laser 

material, have the promise of tuning over most of the 2-4 µm region, but are susceptible 

to thermal effects and have other issues that make demonstration of sources with 

sufficient output power difficult.  The output power of the Cr2+:II-VI laser needs to be 

scaled up to meet military application requirements.  This dissertation investigates the 

feasibility of using Cr2+:II-VI laser materials to produce a laser with enough output power 

to be useful in military sensor applications.  

This dissertation surveys Cr2+:II-VI material properties and potential laser designs to 

assess power scaling feasibility, verifies feasibility with a laser demonstration, and then 

characterizes the thermal effects in the working laser material to help evaluate its 

effectiveness.  The results of the survey show that the Cr2+:II-VI laser materials (such as 

Cr2+:ZnSe, Cr2+:CdSe, and Cr2+:CdMnTe) are especially susceptible to overheating and 

thermally-induced optical distortion, but otherwise are quite satisfactory laser materials. 

Cr2+:ZnSe is the most promising, due to its high thermal conductivity and relatively high 

maximum Cr2+ doping concentration.  A face-cooled disk laser design using Cr2+:ZnSe 

looks most feasible for efficient power scaling at the power levels useful for sensor 
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applications, as it produces high efficiency but low thermal distortion without requiring 

inordinate amounts of input power.  The laser demonstration described in this dissertation 

shows that the Cr2+:ZnSe disk laser can produce sufficient output power, which validated 

the design.  Interestingly, the laser built in this research works well only under a 

restricted set of conditions, an unexpected development that the thermal analysis 

explores.  The thermal analysis shows that the restriction is not the fault of the disk laser 

design itself, but of an experimental deviation from the ideal design parameters that 

require a uniform absorbed power distribution in the laser disk.  Several modifications to 

the disk laser are discussed that should solve the disk-heating problem and make the 

Cr2+:ZnSe disk laser operate as originally designed.  This research concludes that Cr2+:II-

VI laser materials can produce enough power to be useful sources for military laser 

applications, if enough effort is spent on ensuring adequate thermal management in the 

laser material. 
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POWER SCALING FEASIBILITY OF CHROMIUM-DOPED II-VI LASER SOURCES 
 

AND THE DEMONSTRATION OF A CHROMIUM-DOPED ZINC SELENIDE FACE- 
 

COOLED DISK LASER 
 
 

1 Introduction 
 
 
1.1 Background 

Compact, tunable, room temperature, solid state laser sources operating in the mid-IR 

spectral region are of interest to the military for a number of applications such as eyesafe 

laser radar, remote sensing, and infrared countermeasures.  Unfortunately, there are few 

choices for tunable sources in the 2-4 µm spectral region that are suitable for military 

applications.  Additional sources are needed in the 2-4 µm spectral region that are 

efficient, produce several watts of continuous wave or high repetition rate pulsed output 

power, are tunable over sizeable portions of the 2-4 µm range, and operate at room 

temperature.   

A promising class of laser materials being investigated for mid-IR source feasibility is 

II-VI materials doped with chromium.  II-VI materials are compounds of Group IIb 

transition metals and Group VI chalcogens from the periodic table.  Many II-VI materials 

are semiconductors with large band gap and excellent mid-infrared transmission, ideal 

host materials for the chromium ion that, in the 2+ oxidation state, has a laser transition 

in the 2-3.5-µm wavelength range.  Doping chromium into II-VI hosts such as zinc 

selenide[1], cadmium selenide[2], cadmium manganese telluride[3], etc. results in laser 

materials with high quantum yield and extremely broad spectral bandwidth.  Recent laser 
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demonstrations involving the most developed chromium-doped II-VI material, 

Cr2+:ZnSe, indicate the promise of these materials for use as mid-IR sources.  Cr2+:ZnSe 

lasers have demonstrated spectral tuning from 2.1 to 2.8 µm[4], with up to 63% slope 

efficiency and 1.8 watts maximum continuous output power at the peak emission 

wavelength of 2.4 µm[5].  Mode-locked operation has been demonstrated, producing 4-ps 

pulses[6, 7].  Diode pumping has been shown to be possible using diode lasers in the 1.5-

1.8 µm range[8, 9].  Thus, chromium doped zinc selenide looks promising for tunable 

laser applications requiring high power in the 2-3 micron range.  The feasibility of the 

other chromium-doped II-VI laser materials, such as Cr2+:CdSe and Cr2+:CdMnTe, is 

more uncertain, as these materials are not as well developed as Cr2+:ZnSe is.  Work still 

needs to be done to optimize and power scale the “initial demonstration” chromium lasers 

into useful devices, and to investigate the as-yet ignored potential of other chromium-

doped II-VI materials. 

1.2 Problem Statement 

At the start of this research, no Cr2+:II-VI laser had been demonstrated with the 

output power, tunability, and beam quality needed for military applications, although the 

potential was there.  The Cr2+ laser output power needed to be scaled up to at least 5 W 

while maintaining tunability and good beam quality to be suitable for military 

applications.   

Unfortunately, power scaling the Cr2+:II-VI laser is made difficult by limitations in 

Cr2+:II-VI materials technology and the properties of the Cr2+:II-VI materials. It is 

difficult to grow low loss samples of Cr2+-doped materials that have enough chromium 
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for efficient absorption of pump power.  Efficient diode laser pumping of Cr2+:II-VI 

materials at the 10-20 W power level is not yet possible, because the 5-8 µs excited state 

lifetime of Cr2+ requires pumping intensities of at least 2-3 kW/cm2 for efficient laser 

operation, higher than what existing high power diode lasers can produce at the Cr2+ 

absorption band of 1.6-2.0 µm.  High-energy pulsed operation of the Cr2+ laser does not 

look feasible, because the faint chromium doping densities (<0.1% Cr2+) and short 

excited state lifetime make energy storage limited in Cr2+:II-VI materials. Therefore, the 

likely modes of operation of the Cr2+ laser are similar to those of the familiar Ti:Al2O3 

laser: CW, mode-locked, or gain-switched operation, pumped by a high brightness solid-

state pump laser.  Furthermore, intense pumping combined with a rather strong 

dependence of refractive index on temperature[10] makes thermal lensing a serious 

problem at the watt level of output power[5].  Overall heat flow must also be optimized, 

as the nonradiative relaxation rates increase strongly with temperature above 300 K[11].  

These issues have to be dealt with in order to successfully develop a 5-W Cr2+:II-VI laser.  

1.3 Research Objective 

The objective of this research effort was to build and test a 5-W Cr2+ laser operating 

at room temperature, and investigate the issues involved with Cr2+ laser optimization: 

Cr2+ doping level and fluorescence lifetime in Cr2+:II-VI materials, resonator design, heat 

management, thermal lens control, and pumping configuration.  The research focused on 

the more developed chromium-doped II-VI materials such as Cr2+:CdSe and Cr2+:ZnSe, 

as they showed the most promise for immediate power scaling. 
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1.4 Methodology 

The research consisted of the following phases, presented as chapters in the 

dissertation: background research (Chapter 2), material characterization (Chapter 3), laser 

design (Chapter 4), pump source design (Chapter 5), laser demonstration (Chapter 6), 

thermal lensing analysis (Chapter 7), and conclusions (Chapter 8).  In the background 

research phase, the literature was surveyed to assess power scaling feasibility for Cr2+ 

materials, and identify the pertinent design issues and constraints involved.  Background 

research included the investigation of Cr2+:II-VI properties, the development of a simple 

laser model, and a feasibility study of various resonator architectures.  The material 

characterization phase consisted of experiments designed to further investigate aspects of 

Cr2+:II-VI material properties that, according to the background research, might have 

significant impact on laser design.  These experiments included the determination of 

maximum Cr2+ doping levels, dependence of Cr2+ excited state lifetime on temperature, 

bandwidth of Cr2+ stimulated emission cross sections, estimated thermal loading, and 

long-wavelength limit of the Cr2+ laser tuning range.  The results from these experiments 

provided insight that aided in the selection of the final Cr2+ laser design and in evaluation 

of subsequent laser performance.  The laser design phase used the knowledge gained in 

the background research and material characterization efforts to produce the final laser 

design, a Cr2+:ZnSe disk laser, to be tested in power scaling experiments.  In the next 

phase, pump source design, a diode-pumped Tm:YLF laser was designed and built to 

produce a high power pump source for the Cr2+ laser experiments.  The laser 

demonstration phase consisted of the construction of the Cr2+:ZnSe laser design and the 
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analysis of its performance.  This phase consisted of the mounting and characterization of 

the Cr2+:ZnSe disks, and the assembly and testing of several different Cr2+:ZnSe disk 

laser configurations.  In the thermal lensing analysis phase, the thermal lensing occurring 

in the Cr2+:ZnSe disks was measured and compared to modeling results.  In the final 

phase, conclusions, the research was summarized, power-scaling feasibility of Cr2+ lasers 

was determined, and recommendations for future Cr2+ laser research were made. 
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2 Background Research 
 
 

Background research was definitely needed to identify important features of Cr2+ 

laser design and to set the stage for material characterization efforts.  This chapter 

presents the highlights of the background research, surveying the literature to discuss 

Cr2+:II-VI material properties, simple laser modeling, and laser power scaling design 

issues that pertain to the feasibility of power scaling the Cr2+ laser to the 5-W level. 

2.1 Properties of Cr2+:II-VI Materials 

This section presents the material and spectroscopic properties of Cr2+:II-VI materials 

pertinent to laser operation.  Methods of crystal growth, overall Cr2+ energy level 

structure, properties of the laser transition, and thermo-mechanical properties of II:VI 

materials are discussed.  A review of these properties will illustrate the strengths and 

weaknesses of the Cr2+-doped II-VI materials as laser media, as well as provide the 

foundation for the laser model developed later in Section 2.2. 

2.1.1 Methods of Cr2+:II-VI Materials Growth 

Cr2+:II-VI laser materials are made by incorporating chromium into the lattice of II-

VI compounds such as ZnSe, CdSe, CdxMn1-xTe by standard growth techniques such as 

Bridgman growth and seeded physical vapor transport, or by diffusion doping chromium 

into an undoped piece of previously grown II-VI material[2, 3, 12].  Chromium doping 

levels of 1018 cm-3 – 1019 cm-3 are typical, with optical loss increasing and excited state 

lifetime decreasing as the Cr concentration increases[13].   

So far, the diffusion doping method seems to produce the best optical quality 

samples, but none of the manufacturing processes is very consistent.  In the best 
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diffusion-doped samples (reported in the literature), optical round trip losses of 2%-5% 

for a 2-mm thick laser rod are typical.  A larger variation in optical properties is observed 

with melt growth techniques than with diffusion doping, leading to a wide range of 

potential Cr doping levels, impurity/defect concentrations, and loss for similar growth 

conditions.  Vapor transport is known to produce high quality single crystals, but the Cr2+ 

doping level of such crystals is low[2].  On the combined basis of consistency, loss, and 

Cr2+ doping density, diffusion doping appears to be superior to melt and vapor growth.  

However, the science (or art) of Cr2+:II-VI material production is still in its early days, so 

a decision on the eventual best growth process is premature.  For this research, however, 

diffusion-doped samples were used to reduce overall risk. 

2.1.2 Cr2+ Energy Level Structure  

A chromium atom has the electronic configuration [Ar]3d54s1.  When chromium is 

doped into II-VI materials, the chromium atoms occupy the group II element (Cd, Zn, 

etc.) site in the II-VI host lattice, producing Cr2+ active ions in a tetrahedrally symmetric 

crystal field[14]. The 4s electron and one of the 3d electrons of the chromium atom in 

Cr:II-VI materials are used in bonding to the lattice, leaving the remaining 4 electrons in 

the partially filled 3d shell “active.”  The optical properties of Cr:II-VI materials are thus 

a combination of the properties of the II-VI semiconductor host and those produced by 

the Cr2+ energy levels formed by chromium 3d4 electrons in a tetrahedral crystal field.  

As the 3d shell is not shielded from the crystal lattice, the spectroscopic properties of Cr2+ 

doped materials are strongly affected by the host crystal lattice. 
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Although the complete spectrum of optical transitions in Cr:II-VI materials is quite 

complicated and not fully explained with simple models, the basic structure of the Cr:II-

VI energy levels has been modeled with a fair amount of success as Cr2+ ions in a 

tetrahedral crystal field[15]. The energy level diagram of Figure 2-1[14] shows the first 

few Cr2+ levels in ZnSe,  referenced to the semiconductor band gap.  This energy level 

diagram for Cr:ZnSe is fairly representative for the entire class of chromium-doped II-VI 

materials. 

 
The energy levels associated with laser operation are the 5T2 ground state and the 5E 

excited state.  Transitions to/from the other nearby excited states, the 3T1 and 3T2 states, 

are spin forbidden and are weak compared to the transition from 5T2 to 5E[15]. There is a 

possibility of excited state absorption (ESA) due to the 5E-3T1 transition, but it was 

shown to have a small cross section in Cr2+:ZnSe[16].  Thus, the 5T2-
5E laser transition is 

the only significant Cr2+ spectral feature in the mid-infrared spectral region of 1.5-4 µm. 
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Figure 2-1  Cr2+ Energy Levels in Cr2+:ZnSe as described by Grebe et al[14].  
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The II-VI materials themselves are fully transparent over the wavelength range of 

interest.  In addition the II-VI materials have low phonon energies of approximately 300 

cm-1, rendering non-radiative relaxation of the Cr2+ excited state 5E multi-phonon and 

hence weak at moderate temperatures[10].  The simple Cr2+ energy level structure and 

low interaction strength of transitions potentially parasitic to laser operation result in the 

promise of high efficiency and clean dynamics in Cr2+:II-VI lasers. 

 
2.1.3 Properties of the Cr2+ Laser Transition 

Although only the 5T2 and 5E energy levels play a significant role in Cr2+ dynamics in 

the mid-infrared spectral region, strong vibrational coupling[17]  of those levels to the 

host lattice results in an effectively ideal four-level laser system with extremely wide 

spectral bandwidth. The general idea is illustrated in Figure 2-2 (shown for Cr2+:CdSe).  

Since the Cr2+ active energy levels come from 3d electrons, the energy level wave-

functions are not shielded by the rest of the electrons in the Cr2+ ion and are strongly 

coupled to the host lattice.  The coupling is not the same for each energy level, as the 

various energy level wave-functions differ.  This effect causes the bond lengths (modeled 

as a single ‘configuration coordinate’) around the Cr2+ ion at thermal equilibrium to vary 

according to what electronic state the ion is in. The difference between configuration 

coordinates at thermal equilibrium between the 5T2 and 5E levels is so large that a 

radiative transition is most likely to terminate at a high vibrational energy state that is 

effectively unpopulated at room temperature. Since the high vibrational energy states 

relax back to thermal equilibrium very quickly, this pair of energy levels acts effectively 

as the ideal four level configuration for low-threshold, highly efficient lasers. The 
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vibrational coupling also produces extremely broadband absorption and emission, each 

with at least 400-nm full-width-half-maximum (FWHM) bandwidth.  Thus, the Cr2+:II-VI 

laser material appears ideal for producing widely tunable, efficient, mid-infrared lasers. 
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Figure 2-2  Cr2+:CdSe Laser Transition Energy Level Diagram and Plot of 
Absorption and Stimulated Emission Cross Sections 

 
Absorption in Cr:CdSe is peaked at 1.9 µm and has a smooth Gaussian shape at room 

temperature with 400-nm FWHM[2].  The emission is peaked at 2.6 µm and has at least 

400-nm FWHM with a long tail going out towards 3.5 µm.  Such broad absorption and 

emission bands enable the Cr2+:II-VI laser to be pumped by broadband sources and raise 

the possibility of an extended tuning range.  The features of other chromium-doped II-VI 

materials such as ZnSe[1] and CdMnTe[3] are similar, as shown in Table 2-1. 
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The 5E-5T2 transition of Cr2+ in II-VI materials is characterized by a large 

absorption/emission cross section in the 10-18 cm2 range[1], and a short radiative lifetime 

of 6-8 microseconds.  This is somewhat comparable to the better known Ti:Al2O3 laser, 

but with higher cross section and longer lifetime[12]. The large cross sections allow 

efficient absorption of the pump laser in 5-10 mm of gain material, resulting in fairly 

convenient laser rod geometry, given the available Cr2+ doping levels[12, 13] of 1018 cm-3 

to 1019 cm-3.  The short lifetime proves to be both an advantage and a disadvantage to 

laser operation. The advantage is that the fast radiative rate effectively competes with 

nonradiative relaxation processes, rendering the radiative efficiency of the Cr2+:II-VI 

system quite high at room temperature, unlike that of other transition metal ions with 

longer excited state lifetimes such as Fe2+ or Co2+[1]. The disadvantage is that the short 

lifetime means that intense pumping is required to reach laser threshold, simply to 

compensate for the fast radiative decay of the excited state population. 

2.1.4 Thermo-Mechanical Properties 

Assessing the thermo-mechanical properties of a potential laser material is an 

important step in determining the eventual feasibility of using the material in mid-to-high 

Table 2-1  Cr2+:II-VI Laser Transition Properties 
Property Cr:CdSe Cr:ZnSe Cr:CdMnTe 
Absorption Cross Section 
(10-18 cm2) 

3 0.87 2.7 

Absorption Peak (nm) 1900 1750 1900 
Stim. Emission Cross 
Section (10-18 cm2) 

1.8 0.92  

Emission Peak (nm) 2500 2350 2550 
Lifetime at 293 K  (µs)  5 8 4.5 
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power lasers.  The properties of interest are the temperature dependence of the refractive 

index (dn/dT), the thermal shock parameter (RT), and the thermal conductivity (κ).  A 

material with a refractive index that has a strong temperature dependence will introduce 

considerable optical distortion into the resonator, due to the inevitable temperature 

gradients set up inside the laser material by the absorption of the pump energy and the 

necessary cooling. The thermal shock parameter is a measure of resistance of a material 

to cracking while under thermal load – the higher this parameter is, the more intensely a 

laser material can be pumped before it fractures.  The thermal conductivity is also very 

important, as a high thermal conductivity will lead to small temperature gradients in the 

material and low operating temperatures – likely producing higher efficiency laser 

operation than a material with lower thermal conductivity .  A comparison of II-VI 

materials ZnS and ZnSe to more commonly known laser hosts is shown below in Table 

2-2. 

Table 2-2  Thermo-mechanical Properties of Various Laser Hosts[12] 
Material κ  (W/mK) RT  (W/m1/2) dn/dT  (10-6/K) 
ZnS 17 7.1 +46 
ZnSe 18 5.3 +70 
CdSe/CdMnTe 4 No data No data 
YAG 10 4.6 +8.9 
YLF 5.8 1.1 -2.0,-4.3 
Phosphate glass 0.6 0.35 -5.1 
Al2O3 (sapphire) 28 22 +12 

 
The severity of thermally-induced optical distortion is typically estimated by 

calculating or measuring the optical power of the so-called “thermal lens” which arises 

due to the transverse temperature (and thus refractive index) profile that occurs in 
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pumped laser rods.  Optical power of a lens is simply the inverse of the focal length of 

the lens (using units of diopters).  Assuming a uniformly pumped cylinder, side cooled,  

and neglecting the impact of strains in the laser rod, the expression[18] for the thermal 

lens power is: 

dT
dn

A
P

f
TLP a

κ2
1 ≈=  (2-1)

  
In this expression, TLP refers to the thermal lens power, f refers to the thermal lens 

focal length, κ refers to the thermal conductivity, A refers to beam cross sectional area, Pa 

refers to the absorbed power in the rod, and dn/dT  refers to the change in refractive index 

with change in temperature.  The greater the thermal lens power is, the stronger the 

thermally-induced optical distortion is.  Although a typical laser rod will not be uniformly 

pumped, this simplified expression is good for illustrating the basic dependence of 

thermal distortion on material parameters.  Note that the thermal lens power is 

proportional to the product of absorbed power per unit area (absorbed intensity) and the 

ratio of dn/dT to κ. The lower the ratio of dn/dT to κ, the more power per unit area can be 

absorbed for the same thermal lens power.  The ratio is 2.57x105 W/m for ZnSe, 

compared to 23.3x105 W/m for sapphire and 11.2x105 W/m for YAG, based on values 

shown in Table 2-2.  Thermal distortion will be 9 times stronger in ZnSe than in sapphire, 

and 4.3 times stronger than in YAG, for a given heat load. Thermal lensing in Cr2+:II-VI 

materials should therefore be expected to be a significant issue in laser design, and so far 

has indeed been a problem[5].   
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If the thermal distortion can be somehow avoided or mitigated, the II-VI materials 

should be able to handle quite large heat loads.  The thermal shock resistance (RT values) 

of the zinc based II-VI materials such as ZnS and ZnSe are quite good, less than sapphire 

but more than YAG and considerably more than YLF or phosphate glass. Although RT 

data are not available for cadmium-based chalcogenides such as CdSe and CdMnTe, their 

lower thermal conductivity than ZnS and ZnSe likely means a lower thermal-shock 

resistance.  In any case, it would not be any worse than that of YLF, a commonly used 

host material for 10-20W rare-earth lasers. Therefore, thermal-induced optical distortion, 

but not thermal fracture, will be the main obstacle in demonstrating a 5-W Cr2+ laser. 

2.1.5 Summary 

In summary, the Cr2+:II-VI materials look promising for tunable laser applications in 

the 2-3 µm range, judging from the spectroscopic data. The  5E-5T2 mid-infrared 

transition acts as a nearly ideal four level system, has good radiative efficiency at room 

temperature, has a broad bandwidth for tuning, and appears to be free of any parasitic 

processes such as ESA that could limit the usefulness of the materials.  However, the 

short lifetime and greater than average susceptibility to thermal distortion of Cr2+:II-VI 

materials may cause some difficulty with high power laser demonstration. 

2.2 Laser Modeling 

Laser modeling is a useful tool for estimating feasibility of different resonator designs 

to enable the research (and the budget) to be focused on the most promising 

configurations.  Often even the simplest of models can prove very useful as a laser design 

aid. This research employed a simple laser model that consisted of two parts: a one-
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dimensional laser dynamics model using the rate-equation approach and a simple stability 

and mode overlap analysis using the ray-trace method with complex beam parameter.  

The one-dimensional dynamics model was useful in predicting input power levels needed 

for a given Cr2+ laser configuration and what the output efficiency might be, assuming 

the resonator was properly designed.  The stability analysis provided insight into what the 

proper design of the resonator needed to be to achieve the results predicted by the one-

dimensional dynamics model.  This two-part laser model was very useful in the 

feasibility analysis of resonator designs and the interpretation of results from the Cr2+ 

laser experiments.  This section presents the laser model used in this research, discussing 

the laser rate equations that underlie the dynamics model, the one-dimensional laser 

dynamics model itself, and the stability and mode overlap analysis of a simple optical 

resonator typical of those used in this research. In the end, the simple model is proven 

adequate for qualitative prediction of laser behavior, exactly what was needed for both 

the design feasibility evaluation and interpretation of Cr2+ laser results. 

2.2.1 Cr2+ Laser Rate Equations 

The laser dynamics model used in this research is based on rate equations describing 

the population densities and dynamics of the electronic states of Cr2+ ions in Cr2+:II-VI 

laser materials. This section presents a simplified set of Cr2+ energy level population rate 

equations, the assumptions behind them, and defines the parameters needed for the laser 

dynamics model.   

Cr2+:II-VI laser dynamics are well modeled by two energy levels, the 5T2 ground state 

and the 5E excited state. Any Cr2+ ion in the material has to be in either the ground state 
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or excited state – a closed system.  Transition processes between the two states consist of 

absorption, emission, and non-radiative relaxation.  Due to the large energy difference 

between the states, non-radiative relaxation is overwhelmingly a transition from the 

excited state to the ground state.  Thus, the rate equations need to merely describe 

absorption, emission, and non-radiative relaxation between the excited state and the 

ground state. Before the rate equations are written, a few simplifying assumptions are in 

order.     

1. The nonradiative relaxation rate from 5E to 5T2 is constant.  To be accurate, 

this assumption requires laser material temperature to be constant during laser 

operation. 

2. Excited state absorption is not significant.  This assumption has been justified 

in Cr2+:ZnSe by spectroscopic studies[19] but remains to be validated for other II-

VI hosts. 

3. All Cr2+ sites are equivalent (homogeneous broadening). This appears to be 

true based on laser efficiency while operating narrow-band.  At the least, the 

homogeneous linewidth dominates. 

4. Excitation and lasing bandwidth are both narrow with respect to the 

transition bandwidth.  This assumption is reasonable, given 50-75 nm FWHM 

or less free running laser bandwidth but 400-nm FWHM transition cross section 

bandwidth. 

5. The conditions for quasi-four level laser dynamics are satisfied.  The material 

is being pumped close to the absorption peak at ~1.8-1.9 µm and the laser is 
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operating close to or on the long-wavelength side of the emission peak, ensuring 

quasi-four level laser dynamics. 

6. Vibronic relaxation of excited Cr2+ ions to the minimum of the excited state 

energy band is very fast.  Pulsed laser experiments do not show signs of time lag 

when pumping with 40-ns FWHM pulses. Cr2+ laser “turn-on” in a short cavity is 

virtually at the leading edge of the pump pulse.  The vibronic relaxation time is 

thus orders of magnitude shorter than the excited state lifetime. 

With those assumptions in place, the rate equations for the two states can now be written: 

21
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dN

dt

dN 21 −=  (2-3)

21 NNN +=  (2-4)
  

N2 and N1 refer to the population density of the excited and ground states in the laser 

material, respectively. N represents the total Cr2+ concentration in the material. σabs and 

σem refer to absorption and emission transition cross sections, τ denotes the excited state 

lifetime produced by the combination of radiative and non-radiative decay rates, νp and 

νL refer to the pump and laser photon frequencies, and IP, IL denote pump and resonated 

light intensities. 

The assumption of equilibrium (dN1,2/dt = 0) simplifies these equations further, and is 

justified in continuous wave (CW) laser operation, as input pump intensity remains 

constant and the populations adjust until the net rate of change is zero. It is reasonable 

even for pulsed Cr2+ laser operation, as the low energy-storage capability of Cr2+ 
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materials typically ensures that pulsed Cr2+ lasers are often run in quasi-CW 

configuration by pumping with a pulsed source.  The resulting simplified equation is: 
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Optical gain results when it is more likely for a photon at the emission transition 

wavelength to stimulate emission from the excited state than be absorbed.   As long as the 

Cr2+ laser wavelength is greater than about 2.4 µm in Cr2+:ZnSe or 2.5 µm in Cr2+:CdSe, 

the probability of absorption is negligible, and any population of Cr2+ ions in the excited 

state results in optical gain. With this restriction, gain depends only on N2.  The 

expression for the optical gain coefficient is simply excited state population times the 

stimulated emission cross section: 



















+
≅=

L

Lemp

pabs

emem

h
Ih

I
NN

ν
τσν

τσ
σσγ

1

1
12

 (2-6)

  
A further simplification results if the excited state population is small compared to the 

total Cr2+ concentration, so that essentially the entire Cr2+ concentration in the sample 

remains in the ground state. In this case, the resulting optical gain can be expressed in 

terms of Cr2+ concentration, transition parameters, pump photon frequency, and emitted 

photon frequency.   
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Of course, if the Cr2+ ground state is substantially bleached, then this step is not justified, 

and (2-6) must be used instead. 

The expression for gain coefficient can be expressed in more convenient terms by 

invoking the definition of saturation intensity and expressing the pumping rate of the 

excited state in terms of absorbed pump power.  The saturation intensity Isat is defined as 

the light intensity at the peak emission wavelength that stimulates enough emission to 

reduce the gain coefficient by a factor of two – a useful measure of the magnitude of the 

optical field produced in a laser[20]  The saturation intensity can be determined from 

(2-6) or (2-7). 
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The term N1σabsIp in (2-6) or NσabsIp in (2-7) can be expressed as absorbed pump power 

Pabs per unit volume V in the gain material:  

pabspabs

abs ININ
V
P σσ ≈=

1
 (2-9)

  
The expression becomes: 
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If there is little stimulated emission, then the gain coefficient is unsaturated and is called 

the “small signal gain coefficient”, γ0. 

τσ
ν

γ em
p

abs

Vh

P
=0  (2-11)

As stimulated emission is simply the inverse process of absorption, a beam of light 

experiencing optical gain inside the laser material is amplified exponentially according 

the following expression: 

gl
inout eII γ=  (2-12)

where Iout is the light intensity after traveling through the laser material, Iin is the incident 

light intensity, γ is the optical gain coefficient, and lg is the length of the path the light 

traveled inside the laser material.  Now that expressions of the saturation intensity and 

small signal gain coefficient have been developed, the laser cavity model can be built. 

2.2.2 Laser Dynamics Model 

The laser dynamics model is just a simple one-dimensional simulation useful in 

predicting the pump intensity level required to produce laser output and the output 

efficiency expected. For simplicity, it is assumed that the laser resonator is stable and 

produces good transverse overlap between the resonated light and the pumped volume in 

the laser material.  If those conditions are satisfied, this model does a fairly good job of 

predicting laser performance.  

The laser to be modeled is a simple, end-pumped standing wave laser, as it is 

convenient to model and has been widely used in the literature (and in this research) for 

Cr2+ laser demonstration.  This laser consists of the laser material (with optical gain) 

placed between two mirrors creating an optical resonator.  One of the mirrors is highly 
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reflective, and the other is partially reflective to let a fraction of the resonated light out in 

a single beam (the laser output). The model is only one-dimensional, as it completely 

ignores transverse variations for simplicity: area is simply factored out of all the 

equations, leaving optical power measured in terms of intensity (W/m2).  A schematic of 

the laser cavity is shown in Figure 2-3:   

 
where R1 and R2 are mirror reflectivities, Ta and Tb account for laser rod surface 

transmission, Tout is the transmission through the output coupler (Tout=1-R2), Icirc is the 

circulating optical field intensity inside the cavity, Iout is the output intensity of the laser, 

γ is the optical gain coefficient of the laser material, and α is the optical loss coefficient 

of the laser material. 

The laser material has to be excited by a pump source of sufficient intensity to 

produce optical gain greater than the resonator loss to produce output power.  The 

condition at which the round-trip optical gain equals loss is called the laser threshold. The 

gain at threshold γrh can be derived from the threshold condition: 

( ) 1222
21 =−αγ thgl

ba eTTRR  (2-13)

  
Manipulating the expression to solve for the laser threshold gain γth yields: 
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Figure 2-3  Standing Wave Laser Cavity For Laser Model 
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If the laser rod is pumped with enough power that the small signal gain is higher than 

the laser threshold gain, the laser will operate.  The intracavity optical field Icirc will 

increase to the point where the stimulated emission rate increases the depopulation rate of 

the excited state enough to reduce the excited state population and thus the optical gain 

back to the threshold value.  Once the excited state population has been “saturated” back 

to the threshold value, the optical gain for the circulating intensity is equal to the loss, and 

the laser reaches a dynamic equilibrium.  One can estimate the output power of the laser 

by solving for the circulating intensity that it takes to saturate the small signal gain back 

to the threshold gain value.   
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      In the standing wave laser cavity, Icirc is composed of forward and backward 

propagating optical fields (IF and IB) which both experience gain from the laser rod. 

BFcirc III +=  (2-16)
  

Unfortunately for modeling, the two fields have different intensities, as most useful 

resonators are designed to out-couple light from one mirror only.  Thus, the field 

traveling towards the partially transmissive output mirror will have higher intensity than 

the one traveling away from the output mirror.  If the round-trip cavity loss is low, it is 

reasonable to approximate both fields as the same amplitude (tacitly assuming then that 

all loss is evenly distributed throughout the gain medium). 

BFcirc III 22 ==  (2-17)
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The actual output power of the laser is then just the percentage of the field traveling 

towards the output coupler that leaves the cavity: 
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Expressed in terms of absorbed pump power Pabs, and threshold pump power Pth, the 

expression for the laser output intensity is: 
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Simplifying the output expression by lumping the photon energy ratio and output 

coupling efficiency ratio into a single “slope efficiency” parameter ηslope produces 

expressions for laser threshold and output intensity that are commonly used in 

experimental laser work. 
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These expressions are good for semi-quantitative analysis of CW and quasi-CW laser 

dynamics, for low loss cavities.  However, the results of this model will tend to 
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underestimate the efficiency of the laser, due to the varying axial intensity of the optical 

fields inside an actual standing wave resonator.  In a real laser, since the optical field has 

highest amplitude right before the output mirror (in efficient lasers), the ratio of photons 

coupled out of the resonator to the total number of photons lost in one round trip will be 

higher than this model predicts.  Accounting for the non-uniformly distributed losses 

requires a more lengthy derivation[20].  The expression for the output intensity as a 

function of gain, assuming non-uniform losses, is: 
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Now that the expressions for output power vs. input power have been determined, the 

simple one-dimensional dynamics model can be compared with laser demonstrations 

from the literature.  The performance of two Cr2+:ZnSe laser experiments obtained from 

the literature are compared to the model in Table 2-3, using (2-23). 

 

Table 2-3  Comparison of Published Results to Modeling Predictions 
 
Demonstration Mond et al[8] Wagner et al[21] 
Laser Material Cr:ZnSe Cr:ZnSe 
Pump wavelength 2.01 µm 1.94 µm 
Emission wavelength 2.5 µm 2.4 µm 
Output Coupling (T2) 13.4% 7% 
Loss (Other than T2) 2.5% 2-4% 
Threshold  420 W/cm2 450 W/cm2 

Slope Efficiency  73% 63% 
Threshold Predicted by 
Model 

1400 W/cm2 680 W/cm2 

Slope Efficiency Predicted 
by Model 

68.5% 60% 
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Taking a look at the modeling results in Table 2-3, it appears that the simple 1-D 

model does arrive at the correct order of magnitude, but does not exactly agree with the 

experimental results. Notice, however, that the published results do not agree with each 

other any more closely than they do with the model. Although there is not a close 

correspondence between the model and the results of laser experiments in the literature, 

the level of agreement is sufficient for feasibility analysis or semi-quantitative predictions 

of laser efficiency and output power. The less-than-perfect accuracy of this model is not 

surprising.  Threshold predictions are particularly vulnerable to errors in measured 

quantities such as beam diameter, cavity loss, excited state lifetime, and the peak power 

of the pump laser.  Slope efficiency is more robust, being dependent mainly on good 

transverse overlap between the gain region in the laser rod and the resonant cavity mode 

and the ratio of cavity loss to output coupler transmission. If these parameters are not 

well known, then the laser model is useful mainly as a design tool to estimate laser 

threshold intensity order of magnitude as a starting point for laser experiments.  If, on the 

other hand, the mode overlap is good and the cavity loss, output laser wavelength, 

transmission of the output coupling mirror, and Cr2+ excited state lifetime are known, 

then the model will be more useful for quantitative prediction of laser performance.  

A look at the experimental results in Table 2-3 indicates that with the very best laser 

crystals (as used in these demonstrations), threshold intensities of 450 W/cm2 can be 

expected and slope efficiencies in the 60%-70% range can be achieved. Judging from the 

modeling results, the Cr2+:ZnSe samples used in those experiments had to be very low 

loss with little nonradiative decay at room temperature to achieve such low thresholds.  
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Apparently it is possible to obtain very high quality Cr2+:ZnSe samples – good news for 

the intended high power Cr2+ laser research effort.   

Although the modeling presented here is only semi-quantitative, it performs 

surprisingly well in predicting the performance of actual Cr2+ laser demonstrations, given 

the level of approximations used to arrive at the results.  It appears that the Cr2+ laser, at 

least with the ZnSe host, does indeed act like a four-level laser, and it is reasonable to use 

the simple dynamics model to estimate the theoretical best performance of a given laser 

design.  Thus, the model can be used to investigate the feasibility of power scaling 

designs, as long as the results are taken with the proverbial grain of salt, and the laser 

designs should prove stable and produce reasonable mode overlap. 

2.2.3 Analysis of Laser Stability and Mode Overlap 

The predictions of the one-dimensional laser dynamics model discussed in the 

previous section rely on two assumptions which are not guaranteed to be valid in general 

for a real optical system with mirrors and gain elements: namely cavity stability and good 

mode overlap.   

Stability in an optical cavity simply means that a confined optical field can exist 

inside the cavity.  This confined optical field is called a cavity mode.  The condition 

required for cavity-mode existence is self-consistency: the optical field after a round trip 

through the cavity should be identical to the original optical field in phase distribution 

and identical in intensity distribution within a multiplicative constant.  Determination of 

cavity stability is thus a determination of the existence of a cavity mode for the particular 

optical cavity under investigation, and is not concerned with optical gain or loss.  
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Mode overlap is simply the degree to which the optical field of the cavity mode 

overlaps the volume in the laser material with gain (the pumped volume). Pumped areas 

in the laser material that are not overlapped by the cavity mode represent wasted power 

from the pump source.  Mode overlap is determined by solving for the transverse 

intensity distribution of the cavity mode as a function of longitudinal position in the laser 

material, and comparing it to the shape of the absorbed pump intensity distribution (gain 

distribution) in the laser material. 

Cavity stability and mode overlap are important considerations in laser design 

because cavity stability is necessary for the laser to operate, and poor mode overlap leads 

to unsaturated (unused) gain that represents wasted pump power and thus reduced laser 

efficiency.  Making a mistake in cavity design that results in instability or poor mode 

overlap could be unfortunate for the Cr2+ laser demonstration.  Analysis of optical cavity 

stability and predicted cavity mode size (for mode overlap calculations) are needed to 

supplement the one-dimensional model to aid in designing and analyzing the 

performance of real laser cavities. 

The technique used in this research to determine cavity stability and mode overlap is 

the so-called ABCD method using the Gaussian complex beam parameter, described in 

laser textbooks such as Laser Electronics[20].  It is assumed that a Gaussian beam is the 

fundamental TEM00 mode of the laser cavity.  The conditions for cavity stability are 

simply the conditions for the existence of the Gaussian mode.  The existence and 

properties of Gaussian cavity modes can be calculated using simple ray-optics matrix 
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methods and the so-called ABCD law, which relates how ray optics matrices can be used 

to account for Gaussian beam propagation. 

The first step in this procedure is to determine the ray optics matrix that describes a 

round trip through the optical cavity.  Each optical element in the laser cavity is described 

by a 2x2 matrix.  The effect of the beam going through two or more optics is handled by 

simply multiplying the matrix of the first optic by the matrix of the second optic, etc., 

with free space between optics having its own matrix representation. The round-trip 

through the optical resonator ends up being represented by a simple 2x2 matrix consisting 

of all the component matrices multiplied together. 
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The next step is to apply the stability criterion.  A Gaussian beam cavity mode exists 

if the following condition is satisfied: 
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As long as the cavity is stable, the cavity mode radius can be found at any point inside 

the resonator. This is done by calculating the ray-optics matrix for a round-trip through 

the resonator at the point of interest and using the following expression for the mode 

radius: 
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where W is the mode radius, A, and D are ray-optics matrix elements, and λ is the 

wavelength of the light in the cavity. 

Mode overlap is determined by simply calculating the mode radius in the laser rod 

and comparing it with that of the gain region.  It will be assumed that the cavity mode is 

aligned with the gain region in the transverse plane, so a comparison of mode radius to 

gain region radius is meaningful.  In long laser rods, the radius of the resonator mode or 

gain region might change significantly as a function of longitudinal position in the laser 

rod.  However, this is not the case for the short laser rods of high index Cr2+:II-VI laser 

materials considered in this research. 

Interpretation of stability is quite simple: the laser cavity produces output when it is 

stable, and does not when the cavity is unstable.  The interpretation of mode overlap is 

not so simple, as there is considerably more going on with cavity mode structure than this 

model considers.   

In this research, mode overlap calculations were used for laser design purposes as a 

qualitative indicator of what kind of performance would result in the Cr2+ laser for a 

given optical cavity.  There were three qualitative kinds of mode overlap with different 

consequences for laser efficiency: 

1. Wmode = Wgain:  If the radius of the cavity mode were the same as that of the gain 

region, throughout the laser material, then most likely the efficiency of the laser 

would be highest: close to that of the ideal case assumed in the dynamics model.  

The stable Gaussian mode would likely be a fairly accurate representation of the 

real laser cavity mode. 
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2. Wmode > Wgain:  If the radius of the cavity mode were much larger than the radius 

of the gain region, then although laser efficiency should be high because all the 

gain would be saturated, the efficiency would be less than that predicted due to 

thermally-induced optical distortion present at the edge of the gain region in Cr2+ 

materials. In this case, the real laser cavity mode would be similar to the predicted 

Gaussian mode but somewhat distorted due to the thermal aberration that is not 

well represented as a spherical optical element. (See Section 6.5 and Chapter 1 for 

further discussion of thermal effects.) 

3. Wmode < Wgain:  If the radius of the cavity mode were much smaller than the 

radius of the gain region, then one of two things could happen: the efficiency of 

the laser would be significantly reduced due to the pump power wasted on the 

unused areas of the gain region, or multiple cavity modes would simultaneously 

be supported by the large gain region, preserving laser efficiency but increasing 

output beam divergence. The amount of mode selectivity of the resonator would 

determine which would happen. 

Experience shows that the most efficient laser operation requires a TEM00 cavity 

mode radius ~ 50% - 100% of the gain region radius, producing at least slightly multi-

mode output.  

2.3 Power Scaling feasibility of the Cr2+:II-VI Laser 

Power scaling the Cr2+ laser (to the 5-W power level) was the main goal of this 

research.  A review of Cr2+ power scaling experiments and effective high power laser 

designs was conducted to determine what resonator designs and Cr2+ materials were the 



 

 2-26

most likely to result in a successful power scaling demonstration.  This section presents 

the highlights of that review, discussing Cr2+ laser designs found in the literature, design 

issues involved with the power scaling of Cr2+:II-VI lasers, and the feasibility of several 

prospective resonator designs..  

2.3.1 Cr2+ Power Scaling in the Literature  

Although the literature shows many successful initial laser demonstrations of Cr2+:II-

VI materials, the laser cavities and crystal geometries used have all been very simple, 

suitable for initial laser demonstrations but not high power operation.  Although power 

scaling has been attempted[5], more advanced resonator designs have not.  The typical 

demonstration resonator used the end-pumped standing wave configuration with several 

watts of 2-µm pump power focused to a 40-80 µm radius in the laser rod.  The laser 

cavity would be either a 4-mirror folded cavity or a simple 2-mirror hemispherical cavity, 

using short radius of curvature mirrors to achieve cavity stability.  A representative 

schematic is shown in Figure 2-4 for a low power 4-mirror folded cavity Cr2+:ZnSe laser 

demonstration[13]. These designs work well at low pump power levels, and indeed 

require only a few tenths of a watt absorbed power in a 40-µm radius beam to reach laser 

threshold[21].  However, neither of these designs can tolerate the high degree of thermal 

lensing present in heavily pumped Cr2+:II-VI materials, and thus so far only low power 

has been demonstrated. 
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2.3.2 Cr2+:II-VI Power Scaling Issues 

For the Cr2+:II-VI laser, the material properties and laser demonstrations suggest that 

the likely power scaling issues are thermal lensing, increased nonradiative decay at 

elevated crystal temperatures, the low Cr2+ doping density, and damage.  These issues are 

interrelated, as thermal distortion can lead to damage, increased nonradiative decay leads 

to increased heating, etc. The overall result is that Cr2+ laser design for high power 

operation is an exercise in engineering tradeoffs and designing around simultaneous 

constraints. 

Thermal lensing appears to be the Achilles heel of the Cr2+:II-VI materials.  Output 

power of end-pumped Cr2+ lasers has been limited to the 2-watt level by severe thermal 

lensing.  The high brightness pumping needed with 5-8 µs lifetime Cr2+ materials 

combined with their high dn/dT, creates large thermally induced refractive index changes 
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Figure 2-4.  Typical Configuration for Low Power Cr2+:II-VI Laser Demonstrations 
(4 Mirror Standing Wave Cavity with 2-µµµµm Pump and Cr2+:ZnSe Material)  
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in the pumped region of the gain material. Standard end-pumped CW Cr2+ lasers can 

expect thermal lensing focal lengths of 4 cm or less, when operating at 4 times threshold 

in a low loss cavity, based on a standard thermal lensing model[18] and recent Cr2+:ZnSe 

thermal lensing measurements[5].  Scaling laser power beyond 2 W requires an 

alternative resonator design. 

Increased nonradiative decay of the Cr2+ excited state at elevated temperatures has 

been reported in the literature[1] and should result in reduced laser efficiency at operating 

temperatures greater than about 300 K. This sets limits on Cr2+:II-VI operating 

temperature for efficient laser operation. 

Cr2+ doping in II-VI materials is limited to ~2x1019 cm-3 or less due to the onset of 

significant emission quenching and optical loss at greater doping levels[13, 22].  The low 

Cr2+ doping density in II-VI materials affects power scaling efforts by requiring a pump 

absorption path of 2 mm or more, and raises the possibility that the pump absorption 

could be saturated (bleached), resulting in inefficient pump absorption, especially for 

pulsed excitation.  In addition, high energy Q-switched operation is out of the question, 

as the Cr2+:II-VI material cannot store enough energy.  

The damage threshold of II-VI materials is approximately 100kW/cm2 for CW light 

and ~ 2 J/cm2 for pulsed light. A CW intensity in the 100 kW/cm2 range should never be 

required in Cr2+ lasers, so CW damage should only occur if a surface were already 

compromised (dirty, or bad coating). The main risk for CW damage is thermal fracture 

caused by a temperature gradient that is too steep.  This will occur for absorbed pump 

intensities considerably less than 100 kW/cm2.  Damage during pulsed operation could 
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easily occur if the damage threshold were exceeded, which corresponds to ~ 16 mJ in a 1-

mm diameter beam.  IR coatings vary widely in pulsed damage threshold, so considerable 

variation in pulsed damage threshold is expected.  Avoiding damage entails proper 

management of heat transfer in the laser rod to avoid thermal fracture, keeping the 

surfaces clean and scratch free, obtaining high damage threshold coatings, and avoiding 

small beam diameters in the laser material during pulsed operation.  

In summary, significant issues have to be considered when power scaling the Cr2+ 

laser.  First, thermal lensing appears to be so strong that the resonator must be designed to 

mitigate or accommodate it.  Second, active cooling is required to prevent excessive non-

radiative relaxation. Finally, Cr2+ doping considerations and damage limits force 

resonator designs to consider large diameter beams and laser designs with long pump 

absorption paths.  Of these issues, by far the most significant is the thermal lensing.  The 

simple bulk end-pumped resonator can’t deal with so much thermal lensing, especially 

given all the other simultaneous constraints.  A different resonator design that can handle 

or mitigate severe thermal lensing is needed to enable successful power scaling of the 

Cr2+:II-VI laser to the 5-W level. 

2.3.3 Resonator Designs for Power Scaling 

The biggest obstacle to power scaling the Cr2+:II-VI laser is thermal lensing.  

Therefore, resonator designs which mitigate thermal lensing are prime candidates for use 

in power scaling the Cr2+:II-VI laser.  Many resonator designs that mitigate thermal 

effects are found in the literature.  The basic design categories are the optical fiber laser, 

the zig-zag slab laser, the waveguide laser, and the thin disk laser. Of these, only the slab 
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and thin disk laser designs are currently feasible, as Cr2+-doped II-VI optical fiber and 

low loss 2-3 µm waveguides are not available.  

The zig-zag slab laser consists of a rectangular slab that is edge pumped, face cooled, 

and shaped so that the resonated light bounces off the faces of the slab in a zig-zag path, 

averaging the effects of thermal gradients in the plane of the path of the resonated 

light[18]. This greatly reduces the effects of thermal gradients on the resonator. The slab 

laser is an effective design for power scaling to the stress fracture limit of a given laser 

material, but poor coupling efficiency and the large amount of pump laser power needed 

for reasonable slab sizes make the slab laser not attractive for a 5-20 W Cr2+ laser.  For 

example, a 1-mm x 3-mm cross section zig-zag slab, pumped transversely, would need a 

total of 75 W of pump power in the slab to reach 4 times threshold, yielding 27-W output.  

This assumes that a very optimistic 80% absorption efficiency, 500 W/cm2 laser 

threshold and 60% slope efficiency applicable to the end-pumped laser demonstrations 

still hold for a side-pumped slab laser.  This also assumes that 75 W of pump power was 

available for pumping the Cr2+ laser.  In this research, 20 W was the maximum available 

pump power, barely enough to reach laser threshold. 

A slab with smaller transverse area is needed to reduce laser threshold, if the slab 

geometry is to be used in the 5-W Cr2+ laser demonstration.  However, only the thickness 

of the slab can be reduced, because the 3-mm slab width is needed for effective 

absorption of the pump laser light.  Keeping the slab width at 3 mm while reducing the 

slab thickness below 1 mm raises coupling efficiency and beam quality issues.  It is 

difficult to effectively couple the energy from such a non-radially symmetric gain region 
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into a TEM00 cavity mode that can produce a low divergence, round output beam.  Given 

a 20-W limitation in pump power, the slab design is not suitable.  If a 75-W pump laser, 

or better yet, a 75 W, 1.9-µm diode laser stack became available, the slab laser design 

might be an attractive option. 

 
The thin disk laser, on the other hand, has been shown to scale up to kW output 

power (with Yb:YAG), just like the slab laser, but can retain high efficiency at low power 

as well[23].  The thin disk laser is essentially an end-pumped rod laser that uses a face-

cooled laser rod with a large ratio of diameter to thickness.  One face is anti-reflection 

(AR) coated and the other face is high-reflection (HR) coated and mounted on a heat sink 

for cooling. The thin disk acts both as the gain element and as a mirror of the optical 
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Figure 2-5.  Schematics of Side and Top Views of the Zig-Zag Slab Laser Concept 
The slab is rectangular in cross section and has Brewster surfaces on the ends for high 
efficiency transmission of the resonated light.  Pumping is from the side, ideally from 
high power diode laser arrays, and cooling is provided by heat sinks on the top and 
bottom surfaces of the slab.  The resonated light travels in a zig-zag path that averages 
out the effects of the refractive index gradient associated with the primary thermal 
gradient in the slab, thus mitigating thermal lensing. 
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cavity.  Pumping is done through the AR face, at an angle to avoid the use of extra 

dichroic mirrors in the resonator.  The thin disk geometry minimizes radial thermal 

gradients and thus reduces thermal lensing to manageable levels.  If the transverse 

intensity distribution of the input pump laser is uniform, (a ‘top-hat’ beam), the thermal 

lensing in the laser disk will be even lower.   

As long as the disk is thin enough, the desired output power can be adjusted by 

changing the size of the pumped area on the disk.  A 0.25-mm thick disk should allow 

operation of modes with diameter > 0.5 mm with only weak thermal lensing. (The larger 

the ratio of pumped diameter to disk thickness, the lower the amount of thermal lensing 

for a constant absorbed intensity.)  Operating at 4 times threshold and assuming a 500 

W/cm2 threshold, 80% absorption efficiency and 60% slope efficiency, a 1-mm pumped 

diameter requires 20-W pump power to reach 4 times threshold and results in 7-W output 

power with an overall efficiency of 35%.  Given the good coupling efficiency provided 

by this end-pumped configuration, these estimates should be fairly reasonable.  The thin 

disk laser is therefore likely to be considerably more efficient than a slab laser, at least for 

low-medium power TEM00 applications.  

However, there is a difficulty with the thin disk laser design: absorbing the pump 

power efficiently.  Cr2+ doping levels are limited by scattering and high nonradiative 

relaxation rates[13].  To effectively absorb the pump power in a 0.25-mm thick disk, a 

Cr2+ doping concentration of at least 1019 cm-3 and a multiple-pass pumping system with 

eight or more passes are needed, thus complicating the laser design.  In addition, the 

transverse absorbed power density in the laser disk must be as uniform as possible, 
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requiring a ‘top-hat’ pump beam in the ideal case.  However, the added system 

complexity of the thin disk laser is a small price to pay for mitigation of the thermal 

effects which have so far hindered the power scaling of the Cr2+ laser.  

 

 
2.3.4 Summary of Cr2+ Laser Power Scaling Feasibility 

It should be possible to produce a 5-W Cr2+:II-VI laser if a resonator design is used 

that considerably reduces thermal lensing and pump laser power of 20 W or more is 

available. Of the typical laser geometries suitable for high power Cr2+ laser design, the 

thin disk laser design is the most attractive option available for the demonstration of a 5-

10 watt Cr2+ laser.  The additional pumping optics required in the thin disk laser 
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Figure 2-6.  Thin Disk Laser 
The disk is mirror coated on the rear surface and mounted on a heat sink.  Since the disk 
is thin, the pump laser beam has to be passed through the disk many times to achieve 
adequate pump absorption.  Off axis pumping is used to minimize cavity loss for the 
resonated light.  If the pump has uniform transverse intensity distribution, and has 
diameter at least four to six times the disk thickness, thermal gradients in the laser disk 
will be predominantly longitudinal, significantly reducing thermal lensing. 
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geometry are more than offset by the mitigation of thermal lensing and efficient operation 

at powers unobtainable with end-pumped rod designs. 
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3 Material Characterization 
 
 

This chapter presents spectroscopic experiments to investigate maximum Cr2+ doping 

concentrations for useful laser material, the temperature dependence of Cr2+ fluorescence 

lifetimes in different materials; stimulated emission cross section values and bandwidths, 

estimated thermal loading under lasing and non-lasing conditions, and broadband tuning 

of a Cr2+:CdSe laser to verify optical gain estimates at long wavelengths.  These 

experiments were conducted over quite some time, using a variety of Cr2+ samples and 

pump laser configurations.  These variations make quantitative extrapolation somewhat 

questionable, but the qualitative trends and conclusions obtained have proven invaluable 

in understanding the Cr2+ laser and laser design considerations. 

3.1 Determination of Maximum Cr2+ Doping Level 

The disk laser approach to power scaling the chromium laser involves making the 

laser crystal as thin as possible, to minimize overall passive loss due to the unavoidable 

scattering in the materials, and to aid in heat removal.  The thinner the laser material, the 

higher the dopant concentration needs to be to ensure adequate absorption efficiency of 

the pump laser, through providing both a high absorption coefficient and enough Cr2+ 

ions to prevent bleaching. The Cr2+-II-VI laser crystals used in bulk end-pumped laser 

experiments reported in the literature had < 1019 cm-3 Cr2+ concentration and thus 

required pump absorption path lengths longer than 2 mm to ensure efficient utilization of 

the pump laser.  Cr2+ doping-level in laser disks would thus have to be higher than that of 

the typical bulk material to enable the disks to be thin.  Unfortunately, a survey of 

existing Cr2+:II-VI samples in the lab indicated that crystals doped with too much Cr2+ 
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tended to exhibit reduced excited state lifetime, likely due to nonradiative decay 

processes. The maximum chromium concentration in CdSe or ZnSe that would still result 

in good laser material needed to be determined.  

An experiment was conducted to determine the effect of high doping on Cr2+ excited 

state lifetime in Cr2+:ZnSe and Cr2+:CdSe, two of the most promising Cr2+:II-VI laser 

materials. Diffusion-doped samples of Cr2+:CdSe and Cr2+:ZnSe were obtained, 

respectively from Cleveland Crystals and Spectragen, with the highest Cr2+ concentration 

available in each respective material, and were tested for quenching of fluorescence 

which coincides with high Cr2+ doping. The Cr2+:CdSe sample was a 4-mm thick block, 

anti-reflection coated on two faces.  The Cr2+:ZnSe sample was an uncoated 1-mm thick 

slab, later coated and used in the disk laser power scaling experiment. A Q-switched 

2.06-µm Tm,Ho:YLF laser beam with 300-ns FWHM pulses pumped the samples.  Cr2+ 

absorption was measured with a power meter and fluorescence decay time constant was 

measured simultaneously with a fast InGaAsP photodiode and an oscilloscope. Since the 

diffusion and polishing processes used in sample fabrication resulted in transverse 

chromium-concentration gradients across the samples, translation of the samples across 

the laser beam provided access to different Cr2+ concentrations. The results are shown in 

Figure 3-1 and Figure 3-2.   
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Figure 3-1.  Pump Absorption and Cr2+ Fluorescence Lifetime Measurements in       
1-mm Thick Cr2+:ZnSe Sample as a Function of Pump Beam Position 
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Figure 3-2.  Pump Absorption and Cr2+ Fluorescence Lifetime Measurements in     
4-mm Thick Cr2+:CdSe Sample as a Function of Pump Beam Position 
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Qualitatively, the samples showed a negative correlation between pump absorption 

and excited state lifetime.  In the areas with the most pump absorption, fluorescence 

lifetimes were reduced by more than a factor of two compared with data obtained from 

other samples having lower Cr2+ doping.  Such reduced excited state lifetimes could 

significantly impair Cr2+ laser efficiency in pulsed operation, and raise Cr2+ laser 

thresholds to unacceptably high levels in CW operation. 

But what were the actual Cr2+ concentrations in the samples? Unfortunately, that 

determination is difficult.  Small, pulsed beams had to be used to obtain accurate lifetime 

data, which led to intense localized pumping intensity. The result was that the Cr2+ 

absorption was partially bleached for both samples in the experiment.  In other words, the 

population density of Cr2+ ions in the ground state was not independent of pump input 

power.  Estimates of Cr2+ concentration using the absorption cross section and Beer’s 

Law assuming constant ground-state population would not be accurate.  This also raises 

the question of how accurate the published values of absorption and emission cross 

sections are.  Calculations using published cross section values and the assumption that 

bleaching is negligible resulted in estimated Cr2+ concentration values of 0.4x1018 cm-3 to 

1.4x1018 cm-3 for Cr2+:CdSe, and15x1018 cm-3 to 40x1018 cm-3 for Cr2+:ZnSe. However, 

the input pump intensity was ~70 µJ per pulse in a 90-µm radius beam, resulting in 

approximately 7x1014 photons illuminating the pumped volume. According to the 

calculations, even the highly doped Cr2+:ZnSe piece did not have more than 1015 Cr2+ 

ions in the pumped volume.  Thus, the concentration values calculated assuming 

negligible bleaching are inaccurate.  
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In theory, it is possible to estimate Cr2+ concentration and absorption cross section 

through measurement of absorption saturation as a function of input light intensity, as the 

varying transmission renders both dopant concentration and absorption cross section 

observable.  In this research, the process of bleaching a saturable absorber was simulated 

numerically in Matlab and run for the experimental conditions (using published 

absorption cross section values) to provide an estimate of Cr2+ concentration.  

Simultaneous estimation of absorption cross section and Cr2+ concentration was not done, 

as it required much more extensive data taking and control over experimental parameters, 

making it outside the scope of this research. 

The simulation used the finite-element approach, breaking down the Cr2+:II-VI 

material into a three dimensional grid of elements with independently tracked Cr2+ 

ground state populations.  A Q-switched laser pulse was modeled as a series of smaller 

pulses, each of which having low enough energy that Beer’s Law was a valid model for 

absorption.  The simulation sent each component pulse through the laser material, 

calculated how many photons were absorbed in each element, and then updated the Cr2+ 

ground state population values to account for the absorption. This was repeated for all the 

component pulses.  Comparing the total number of photons absorbed to the total number 

of incident photons in the laser pulse yielded transmission (or absorption) for a particular 

Q-switched pulse energy.  This process was repeated for an array of input pulse energies, 

creating a curve that could be fit to experimental data by modifying simulation 

parameters.   
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Pertinent simulation parameters were 70-µJ incident energy per pulse at 2.06 µm, 

Gaussian pump-beam intensity distribution with 90-µm radius, uncoated 1-mm thick 

Cr2+:ZnSe with pump absorption cross section of 2.9x10-19 cm2, and 4-mm thick anti-

reflection coated Cr2+:CdSe with pump absorption cross section of 2.25x10-18 cm2.  The 

absorption cross section values at the 2.06-µm pump laser wavelength were calculated 

using published peak cross section values of 0.87x10-18 cm2 for Cr2+:ZnSe[11] and   

3x10-18 cm2 for Cr2+:CdSe[2] and FTIR transmission curves. Note that using a 1.9-µm 

Tm:YLF pump laser would have resulted in higher absorption cross sections values for 

both materials, 0.67x10-18 cm2 for Cr2+:ZnSe and 3x10-18 cm2 for Cr2+:CdSe, but this laser 

was not available at the time of the experiment. 

 Applying the simulation to estimate Cr2+ concentrations from absorption data results 

in better estimates of Cr2+ concentration than those obtained under the assumption that 

bleaching is negligible. Using the simulation to estimate Cr2+ concentrations from the 

absorption data in Figure 3-1 and Figure 3-2 results in plots of fluorescence lifetime as a 

function of estimated Cr2+ concentration.  These plots are shown in Figure 3-3 and Figure 

3-4. The simulation produced estimated Cr2+ concentration values of 1.7x1018 cm-3 to 

5.9x1018 cm-3 for the Cr2+:CdSe sample, and 21x1018 cm-3 to 36x1018 cm-3 for the 

Cr2+:ZnSe sample. Since published absorption cross section values were used, which 

have uncertainty of about a factor of two, the estimated Cr2+ concentrations have the 

same factor-of-two uncertainty.  However, the fact that Cr2+:ZnSe had considerably 

larger absorption coefficient than the Cr2+:CdSe did makes Cr2+:ZnSe appear more useful 

for laser applications requiring a short pump absorption path.  
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Figure 3-3.  Cr2+ Fluorescence Lifetime vs. Estimated Cr2+ Concentration in 1-mm 
Thick Cr2+:ZnSe Sample (Using Saturable Absorber Simulation) 
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Figure 3-4.  Cr2+ Fluorescence Lifetime vs. Estimated Cr2+ Concentration in 4-mm 
Thick Cr2+:CdSe Sample (Using Saturable Absorber Simulation) 
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Using the low concentration lifetimes of 8 µs for Cr:ZnSe[1] and 6 µs for 

Cr:CdSe[2], it appears that Cr2+ concentrations of approximately 2x1019 cm-3 in ZnSe and 

6x1018 cm-3 in CdSe should result in a similar lifetime reduction, assuming published 

absorption cross section values are accurate. This experiment shows that, at least for 

current doping methods, ZnSe allows a higher chromium concentration to be 

incorporated in a useful laser crystal – about a factor of three times more Cr2+ than CdSe 

will accept.  Using these concentration values, a 0.25-mm thick Cr2+:ZnSe disk would 

have 28% single-pass absorption at 1.9 µm and be capable of absorbing 52 mJ/cm2. A 

similar disk of Cr2+:CdSe would have 36% single-pass absorption at 1.9 µm and be 

capable of absorbing 16 mJ/cm2.  ZnSe thus appears to be the better host for Cr2+ in terms 

of energy storage. 

3.2 Temperature Dependence of Excited State Lifetime 

It has been known for years that Cr2+-doped II-VI materials exhibit reduction of Cr2+ 

excited state lifetime at elevated temperatures[11].  An estimate of maximum advisable 

operating temperature for Cr2+ laser materials was needed for the power scaling design 

effort.  Therefore, an experiment was conducted to measure the fluorescence lifetime of 

Cr2+ materials at different temperatures.  A sample each of Cr2+:CdSe, Cr2+:ZnSe, and 

Cr2+:CdMnTe were subjected to a temperature range of 15 K to 400 K while Cr2+ 

fluorescence lifetime was measured. A cryostat was used to produce temperatures below 

290 K, and an oven was used to produce temperatures greater than 290 K.  A fast 

InGaAsP photodiode and oscilloscope detected the Cr2+ fluorescence and a 1.9-µm 

Tm:YLF laser run at 500 Hz with 0.8 mJ, 300-ns FWHM pulses in a ~1-mm diameter 
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beam provided the excitation.  Temperature was measured with a thermocouple attached 

to the copper block on which the samples were placed.  The measured fluorescence 

intensity curves were fit with a generic exponential decay function to estimate decay time 

constant (lifetime).  The results are shown in Figure 3-5. 

     Looking at the results, it is quite apparent that these samples showed decreased 

excited state lifetime at both low temperatures and high temperatures.  The reason for the 

decrease in excited state lifetime below 200 K is not known, nor is it explained in the 

literature.  The emission signal (not shown) of all three samples decreased only at the 

higher temperatures, indicating nonradiative processes became significant only at 

temperatures greater than about ~250-350 K.  Increase in temperature above 290-300 K 

resulted in drastic reduction of excited state lifetime and emission strength for all three 

samples.  For reference the absolute maximum Cr2+ excited state lifetimes measured 

under conditions of high fluorescence efficiency for these kinds of materials are 8 µs for 

Cr2+:ZnSe[11],  6 µs for Cr2+:CdSe[2], and 4-5 µs for Cr2+:CdMnTe[3].  For this 

particular experiment, the Cr2+:ZnSe sample exhibited the least reduction in lifetime at 

elevated temperatures. The Cr2+:ZnSe sample exhibited a 4 µs lifetime at 350 K, 

corresponding to a 50% reduction in lifetime.  The other two samples exhibited 50% 

reduction in Cr2+ excited state lifetime at 300 K:  3 µs for Cr2+:CdSe and 2 µs 

Cr2+:CdMnTe.   

When considering this experiment, it needs to be realized that the results really cannot 

be interpreted quantitatively. The three samples had widely different volumes and contact 

areas on the thermal mass, making heat sink temperature a somewhat inadequate measure 
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of sample temperature for comparison purposes.  In addition, since only sample of each 

material was available, the effects of sample-to-sample variation on the temperature 

dependence of lifetime could not be determined.   

In designing a Cr2+ laser, temperatures of 350 K or more inside the Cr2+ laser material 

need to be strictly avoided, and every effort needs to be made to keep the temperature as 

low as possible.  Cooling need not be carried to extremes, fortunately, because operating 

temperatures much below 270 K do not result in longer Cr2+ excited state lifetimes. The 

overall conclusion is that it would probably be best to put the Cr2+ gain cell in a nitrogen 

purged box and cool the laser material to about 270 K, to maximize laser efficiency and 

minimize CW laser threshold. However, room temperature operation may not incur 

significant penalties in efficiency, particularly for Cr2+:ZnSe. 
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Figure 3-5.  Estimated Cr2+ Fluorescence Lifetime vs. Cryostat Temperature 
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3.3 Cr2+ Stimulated Emission Cross Section Measurements 

Emission spectroscopy of Cr2+:CdSe and Cr2+:ZnSe was performed with the goal of 

assessing feasibility of 3-4 µm laser operation.  The experiment used a chopped 1-W CW 

Tm,Ho:YLF laser as the excitation source, a 15-cm monochromator with 300 g/mm 

grating for wavelength discrimination, and lock-in detection with a photo-conductive 

PbSe detector to detect fluorescence.  The particular Cr2+ samples investigated were a 2-

mm thick Cr2+:ZnSe sample with ~7 µs fluorescence lifetime and a 4-mm thick 

Cr2+:CdSe sample with ~3-5 µs fluorescence lifetime at room temperature.  Fluorescence 

was detected over a range from 1.7 µm to 3.4 µm.  Wavelength resolution was 20-nm 

FWHM using ¾-mm spectrometer slit width (required to maintain detector signal-to-

noise ratio) – more than adequate to resolve broad Cr2+ absorption features. Raw 

emission spectra were calibrated for detector response and system transmission using a 

precision, variable temperature blackbody source as a reference.. The following 

procedure was used for calibration and calculation of stimulated emission cross section:  

1. The sample was pumped with the chopped Tm,Ho:YLF laser and Cr2+ fluorescence 

signal intensity S was recorded as a function of wavelength.  

2. The blackbody source was operated at an appropriate temperature such that its power 

spectral density was negligible at wavelengths shorter than that of the Cr2+ 

fluorescence (to minimize “aliasing” effect of multiple diffracted orders getting 

through the grating instrument). The blackbody temperature that matched the best 

was 743 K.  At this temperature, the blackbody radiation was negligible below 1.6 

µm.  
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3. The Cr2+ fluorescence detection system recorded blackbody radiation signal intensity 

R as a function of wavelength. 

4. The theoretical photon density for blackbody radiation BB was generated, using the 

set temperature of the blackbody source (743 K). 

5. The fluorescence signal S was divided by the blackbody reference signal R, and this 

quotient was multiplied by the theoretical photon density for blackbody radiation BB, 

producing the photon number spectral density F.  Since the data were taken as a 

function of wavelength, the result is photon number spectral density with units of 

fluorescence photon number per unit wavelength. 

( ) ( )
( ) ( )λ
λ
λλ BB

R

S
F =  (3-1)

  
6. This photon number spectral density needed to be turned into a line-shape function. 

Therefore, it was normalized such that the integral of F(λ)dλ was unity.  The 

normalized fluorescence photon number per unit wavelength Fn could now be 

considered a lineshape function, and was used to determine stimulated emission cross 

section. 

( )
cn

FA n
em 2

4
21

8π
λλσ =  (3-2)

  
The stimulated emission cross sections for Cr2+ in CdSe and ZnSe calculated by this 

method are shown in Figure 3-6.  Note that the peak cross sections are similar, 10-18 cm2, 

but the Cr2+:CdSe emission extends to much longer wavelengths than that of Cr2+:ZnSe, 

as far as 3.4 µm. (The increase in the Cr2+:ZnSe cross section past 3 µm is a measurement 
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artifact due to second order diffraction of 1.5-1.7 µm fluorescence, magnified by the λ4 

factor in the cross section calculation.) It does not appear likely that Cr2+:ZnSe would 

tune out past 3 µm without exceptionally intense pumping.  Thus if tuning out past 3 µm 

is needed for the laser application, Cr2+:ZnSe would not be suitable despite its superior 

thermal conductivity, strength, and Cr2+ doping density.  A cadmium-based II-VI host 

like CdSe would be needed to access wavelengths longer than 3 µm. 

 
 
3.4 Estimated Thermal Load 

Given the strong thermal lensing and temperature dependent non-radiative relaxation 

rates seen in Cr2+:II-VI materials, it is useful to have an estimate of both lasing and non-
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Figure 3-6.  Calculated Stimulated Emission Cross Section Measurements in 
Cr2+:CdSe and Cr2+:ZnSe Using Calibrated Fluorescence Measurements 
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lasing thermal loading incurred by the absorption of the pump laser beam.  An estimate 

can be obtained by using the fluorescence lifetime and emission line-shape to calculate 

the fraction of pump photon energy that turns into heat for a given temperature (and 

wavelength if lasing).  

When pumped at 1.9 µm, quantum efficiency calculations using the measured line 

shape functions discussed in Section 3.3 produce a thermal load of 15 percent in 

Cr2+:ZnSe and 20 percent in Cr2+:CdSe. These values represent the minimum thermal 

load produced by 1.9-µm pumping under non-lasing conditions, since the non-radiative 

transition path between the excited and ground states is not considered.  Factoring in the 

non-radiative transition rate of course significantly increases the estimated heat load.  

Using the lifetime measurements described in Section 3.2 to estimate non-radiative 

relaxation rates, estimates of non-lasing thermal loading at 300K are 30% for the 

Cr2+:ZnSe sample and 60% for the Cr2+:CdSe and Cr2+:CdMnTe samples. The estimated 

non-lasing thermal loading at 350K is 60% for the Cr2+:ZnSe sample and virtually 100% 

for the Cr2+:CdSe and Cr2+:CdMnTe samples. 

If the samples are lasing, however, the situation changes.  Pulsed and CW laser 

operation result in thermal loading in the range of 30%-40%, though for different 

reasons.  For CW laser operation, the excited state population is clamped at the threshold 

value, considerably reducing the excited state population that can non-radiatively decay. 

The thermal loading for CW operation consists of two parts: the thermal loading due to 

the power absorbed in reaching laser threshold and the thermal loading produced in the 

generation of laser output. The first part is just radiative efficiency, which has been 
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covered already and is on average about 50% for near room temperature operation. The 

second part is simply due to the quantum efficiency of the laser operation, which 

produces thermal loading anywhere from 10% to 40% depending on the pump and laser 

wavelengths.  Thermal loading due to quantum efficiency of the laser is about 25% for 

1.9-µm pumping and 2.5-µm lasing, a fairly representative situation for Cr2+ lasers.  

Thermal loading for CW laser operation is expected to be around 30-40%. 

Thermal loading for pulsed operation is determined mainly by the cavity build-up 

time and the quantum efficiency of the laser.  For pulsed operation, non-radiative 

relaxation affects things differently, mainly decreasing energy storage lifetime.  The Cr2+ 

lifetime is already short enough that CW-pumped Q-switched operation is impractical, so 

gain-switched pumping is used.  In gain-switched pumping, the longer the delay between 

the pump pulse and the Cr2+ output pulse is, the less efficient the laser is due to decay of 

the excited state population.  The fraction of excited state population that decays 

produces thermal loading as if the sample were not lasing.  The fraction of the pump laser 

power that is converted into laser output produces thermal loading based on the quantum 

efficiency of the laser.  The amount of thermal loading is determined by the ratio between 

the start-up time of the laser resonator and the excited state lifetime. Thermal loading for 

pulsed Cr2+ operation is somewhere between the values for non-lasing thermal loading 

and those for thermal loading based on laser quantum efficiency.  Thermal loading in 

pulsed lasing Cr2+:II-VI materials is approximately 25-30%, given 1.9-µm pumping and 

2.5-µm lasing, assuming the pumping is several times threshold and the cavity start-up 

time is several times shorter than the excited state lifetime. 
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Since the thermal load while lasing should stay less than 40%, but the non-lasing 

thermal load at temperatures of 350 K or greater is 60-100%, it is safe to say that the non-

lasing thermal loading for intensely pumped Cr2+:II-VI materials will be as much as 

double that of the thermal loading while lasing, assuming the cooling system is operating 

at room temperature.  

3.5  Bandwidth Measurement of Cr2+:CdSe Optical Gain 

The wide emission bandwidth of Cr2+:II-VI materials makes them attractive source 

materials for applications requiring tunable lasers. Some of the potential applications 

involve the detection of organic molecules (like methane) that have absorption features in 

the 2.7-3.5 µm range.  The Cr2+ laser could be a useful source for those applications if it 

could be made to tune out over that range. The stimulated emission cross section 

measurements of Section 3.3 indicated that it should be possible for Cr2+:CdSe (but not 

Cr2+:ZnSe) to generate laser output over the required range, although such a feat had 

never been demonstrated.  Perhaps limited coating bandwidth and thermal effects had 

prevented earlier experiments[24] from realizing the entire Cr2+:CdSe tuning range. An 

experiment was conducted to measure the bandwidth of optical gain in pumped 

Cr2+:CdSe using a tunable laser cavity, to verify that there really was laser gain in 

Cr2+:CdSe for wavelengths longer than 3 µm.  

The laser tuning experimental setup consisted of a simple end-pumped Cr2+:CdSe 

standing wave laser using a lightly doped 12-mm long Cr2+:CdSe laser rod with 6 µs 

lifetime and 63% pump absorption, a Tm,Ho:YLF laser for excitation, a 295 g/mm 

diffraction grating for tuning, and a 15-cm spectrometer and pyroelectric detector for 
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wavelength measurements.  A schematic of the setup is shown in Figure 3-7. The 

Tm,Ho:YLF laser was Q-switched at 3 kHz  (400 ns FWHM pulses) and focused to a 1-

mm beam diameter inside the Cr2+:CdSe rod.   The laser rod was held in a water-cooled 

heat sink, with the water temperature at 293 K.  Positive thermal lensing inside the laser 

rod provided the cavity stability.  The output from the Cr2+:CdSe laser was the ~20% 

specular reflection from the diffraction grating, and the feedback was provided by the 

first order diffraction.  Changing the grating angle changed the Cr2+:CdSe laser 

wavelength.  The output was sent through a 15-cm monochromator and detected by a 

chopped pyro-electric power meter.  

 
An estimate of relative laser gain as a function of wavelength was obtained by 

recording the threshold of the Cr2+:CdSe laser at a series of different grating angles (Cr2+ 

laser wavelengths) with respect to absorbed pulse energy.  Measuring laser threshold 

provided the most direct measurement of laser gain, requiring the minimum assumptions 

to be made. In this case, the assumption is that, to first order, the cavity loss is constant 

over the tuning range (for lack of any better estimate of diffraction grating specular 
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Figure 3-7.  Cr2+:CdSe Laser Tuning Experiment Configuration 
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reflectivity). Since gain = loss at laser threshold, and the cavity loss was fairly constant 

over the tuning range, the threshold measurements represent a measure of relative optical 

gain as a function of wavelength. The higher the laser threshold for a particular 

wavelength, the lower the gain per unit pump intensity was for that wavelength.  The 

result is shown in Figure 3-8.   

The experiment validates the stimulated emission cross section measurements that 

indicate significant gain out to long wavelengths past 3 µm.  A broad tuning range of 

2450 nm to 3400 nm was demonstrated, the longest wavelength tuning yet achieved for a 

Cr2+ laser. Tuning below 2450 nm has previously been demonstrated, but was not 

possible for this experiment, due to a cutoff in the input-coupler reflectivity at 2450 nm.  

With appropriate broadband optics (such as metallic mirrors), pulsed operation over the 

range of 2.3-3.4 µm from the Cr2+:CdSe laser should be possible.  The fundamental limits 

on the tuning range are ground state absorption at short wavelengths and the onset of 

thermal effects and damage at long wavelengths.  It is possible that Cr2+:CdSe laser 

sources could be used for detection of organic chemicals in the atmosphere, and other 

applications requiring a laser tunable from 2.3-3.4 µm.  Obtaining efficient laser 

operation at the long wavelength end of the tuning curve would require considerable 

effort, however, due to the 40% or higher thermal load produced at those long 

wavelengths (capping optical-to-optical efficiency at 60% at best.). Pump absorption and 

mode matching had better be right on target. 
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3.6 Summary of Material Characterization 

Pertinent Cr2+ laser design issues revealed by these experiments are summarized in 

the following list:   

1. Cr2+ concentrations higher than about 20x1018 cm-3 in Cr2+:ZnSe and 6x1018 cm-3 

in Cr2+:CdSe resulted in over 50% reduction of fluorescence lifetime in the 

samples measured. This would represent the maximum doping level for a useful 

laser crystal.  The concentration might need to be lower for CW laser operation to 

keep threshold low.  Pump absorption is limited to less than approx. 2.1 J/cm3 in 

Cr2+:ZnSe and 0.63 J/cm3 in Cr2+:CdSe. Bleaching of the absorption in good 
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Figure 3-8.  Cr2+:CdSe Laser Threshold as a Function of Cr2+:CdSe Laser Output 
Wavelength 



 

 3-20

Cr2+:II-VI laser crystals is of prime concern in laser design, making Cr2+:ZnSe the 

clear choice for thin disk material or for high energy pulsed operation.  

2. The Cr2+:II-VI materials exhibit reduction in fluorescence lifetime at temperatures 

at or above 300K.  All three materials (Cr2+:ZnSe, Cr2+:CdSe, Cr2+:CdMnTe) 

exhibited this phenomenon. The excited state lifetimes of all three materials fell to 

less than 50% of their maximum values at temperatures of 350K or more. Some 

of the samples exhibited significant lifetime reduction even at 300K.  Any Cr2+ 

laser design must either plan for this to occur or incorporate cooling the outside of 

the laser rod substantially below room temperature to avoid an efficiency penalty.  

A little more investment in materials development might render this problem 

obsolete, however, as there is variability among different samples of essentially 

identical laser materials. 

3. The thermal load in pumped Cr2+ laser materials is significant, as much as 30%-

100% for the non-lasing case, depending on the material and its temperature.  

Fortunately, the thermal load while lasing should be more reasonable, around 

30% for reasonable lasing conditions (1.9-µm pumping at 4 times threshold, 2.5-

µm lasing). Note that laser threshold will increase with increased temperature, so 

thermal runaway needs to be avoided in the laser design by ensuring thresholds 

occur at low operating temperatures (or low input pump powers). Interestingly, 

keeping the laser threshold low also helps to prevent significant bleaching of the 

Cr2+ absorption from occurring in CW and some pulsed laser configurations. 

Running a gain-switched laser with both pump pulse-width and resonator start-up 
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time less than 0.5-1 µs allows one to ignore both temperature effects and 

bleaching effects. 

4. Measurements of stimulated emission cross section show peak cross section 

values in the range of 10-18 cm-3 for both Cr2+ZnSe and Cr2+:CdSe, with maximum 

potential laser tuning ranges of ~2-3 µm for Cr2+:ZnSe and ~2.2-3.4 µm for 

Cr2+:CdSe. 

5. The Cr2+:II-VI materials really can work in broadband lasers tunable over the bulk 

of their emission range, as evidenced by the tuning of the Cr2+:CdSe laser from 

2450-3400 nm. 

The results of these experiments represent a fairly complete picture of the potential 

issues that should be considered in designing a Cr2+ laser, but often are not. One 

notices that there are quite a few restrictions on the parameter space that might 

produce an otherwise effective Cr2+ laser design. Of these, the difficulty of 

incorporating more Cr2+ in the II-VI materials is the hardest to deal with, as it impacts 

laser design in so many ways, all of which impair efficiency.  Getting that 

concentration increased by a factor of 5-10 without increased non-radiative relaxation 

rates would open up the parameter space of Cr2+ laser design considerably.  
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4 Final Cr2+ Laser Design 
 
 

This section discusses the issues involved with determining the optimum laser design 

and presents the resulting final design for the Cr2+ laser power scaling experiment.  First, 

design decisions influenced by the 20-W limit on pump power are discussed.  Next, the 

basic laser design and predicted performance is presented.  A discussion of what optical 

cavity is needed to ensure stability and good mode overlap follows.  Finally, the overall 

laser design is summarized. 

4.1 Design Decisions Forced by Limited Pump Power 

The fact that no more than 20 W of pump power was available resulted in two big 

design decisions that, combined with the constraints imposed by Cr2+:II-VI properties, 

virtually removed all degrees of freedom in the laser design.  The first design decision 

forced by limited pump power was the choice of the disk laser design over the slab laser 

design. Background research indicated that the disk and slab laser designs were suitable 

for power scaling the Cr2+:II-VI laser, but only the disk laser would work efficiently with 

less than 20-W pump power.  The second design decision forced by limited pump power 

was the choice of gain region diameter in the laser disk.  For the 20-W maximum pump 

power available, the beam diameter had to be less than 1 mm to get the laser pumped 

several times above threshold for efficient operation, given the 400-1000 W/cm2 pumping 

needed to reach Cr2+ laser threshold.  

The fact that a 1-mm or smaller beam diameter was to be used in the disk laser forced 

the disk to be only 0.25-mm thick to maintain the 4:1 beam diameter to disk thickness 

ratio needed for thermal lens mitigation.  The Cr2+ doping density in the disk had to be as 
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high as possible, to ensure adequate absorption of the pump laser power.  ZnSe thus had 

to be the host material for the laser disk, as it could incorporate the most Cr2+.  Even then, 

Cr2+ doping densities of at least 1019 cm-3 were needed, the upper doping limit for 

acceptable Cr2+:ZnSe excited state lifetime. Even at this (relatively) high Cr2+ doping 

level, the pump laser wavelength needed to be as close as possible to the Cr2+:ZnSe 

absorption peak at 1.75 µm, and at least 8-pass pumping would still be needed to ensure 

adequate (80%) pump absorption due to the disk thickness. In addition, the loss in the 

resonator had to be low, to allow efficient laser operation with low enough laser threshold 

to prevent Cr2+ absorption from bleaching out before threshold was reached.  In short, a 

maximally-doped 0.25-mm thick disk combined with a complicated multi-pass pumping 

system would result in the best performance for Cr2+ power scaling using the disk laser 

design and < 20-W input power.   

4.2 Estimated Laser Efficiency and Maximum Output Power 

Given a 0.25-mm Cr2+:ZnSe disk and multiple-pass pumping, the efficiency of the 

disk laser would be good if the loss in the disk were low enough.  Since the disk is so 

thin, the loss would be mainly due to surface polish and coating losses. Given IR coating 

technology for ZnSe, coating losses on the order of 2% or less could be expected.  

Assuming loss of 2% in the laser disk, output mirrors already available in the lab with 

reflectivity of 97%R or 90%R (at 2.5 µm) could be used to complete the optical cavity, 

producing predicted output power levels of 6-6.5 W at slope efficiencies in the range of 

45-65% and thresholds of 380-950 W/cm2.  The design predicted more output power than 

the 5-W goal, hopefully enough to provide a comfortable safety margin. 
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4.3 Cavity Design for Stability and Mode Overlap 

The above calculations assumed that a stable resonator with good mode overlap at the 

gain region would be used. To achieve the efficiencies predicted in the laser dynamics 

model, the resonant cavity had to be stable and support a mode radius somewhere 

between approximately 50% and 100% of the radius of the pumped spot, multi-mode 

operation being acceptable for this demonstration.  A stable cavity with mode radius 

between 0.25 mm and 0.5 mm was needed.  

The resonant cavity was a simple two-mirror standing wave cavity shown in Figure 

4-1 consisting of the highly reflective (coated) rear surface of the Cr2+:ZnSe laser disk 

acting as one mirror and a concave partially reflective output coupler as the other mirror.  

This simple cavity was easy to align and did not suffer the loss that would have been 

incurred by including additional optics in the laser cavity.  Pumping the laser disk was 

done through the disk input face, using off axis beams to allow multiple-pass pumping to 

be done without having extra optics in the resonator.  For stability and mode overlap 

considerations, the only effect of pumping is to vary the strength of the thermal lens 

present in the gain material. 
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The stability of this simple laser cavity was determined by three things: the distance d 

between the disk and the output mirror, the radius of curvature R of the output mirror, and 

the focal length fth of the thermal lens present in the laser disk gain region. The thermal 

lens in the laser disk was modeled as an unaberrated thin lens for simplicity and indeed 

for lack of knowledge of the nature and severity of actual aberrations.  The disk was thin 

enough that, with a thermal lens present, it acted like a concave mirror with radius of 

curvature equal to the one-pass focal length of the thermal lens.   The expression for 

cavity stability was thus essentially the familiar expression for the stability of a two-

mirror cavity, using the convention of concave mirrors having positive radius of 

curvature and converging lenses having positive focal length: 
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In addition to stability, mode overlap considerations imposed a constraint on cavity 

design.  Mode radius at the laser disk needed to be in the range of 0.25 mm to 0.5 mm for 
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Figure 4-1.  Schematic of Disk Laser Cavity 
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the likelihood of efficient laser operation to be good.  The expression for the mode radius 

W at the laser disk is: 
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Note that the thermal-lens focal length of the laser disk appears in the expressions for 

cavity stability and mode radius at the laser disk.  The amount of thermal lensing had to 

be estimated in order to calculate cavity stability and cavity mode size.  The disk laser 

geometry was supposed to render thermal lensing negligible if the disks were at least  4 

times thinner than the beam diameter, and the transverse absorbed power distribution 

were uniform. However, if experimental conditions deviated from the ideal design 

specifications, such as having to use thicker disks or pumping with non-uniform 

transverse intensity distribution, strong thermal lensing might be present.  The simple 

equation of (4-3) for thermal lensing in a uniformly pumped laser rod was used to 

estimate the thermal-lens focal length for the case of strong thermal lensing. 
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The result was a 40-cm focal length thermal lens for a 1-W heat load absorbed in a 1-

mm diameter spot in Cr2+:ZnSe.  The actual heat load produced in Cr2+:ZnSe material as 

a fraction of pump power absorbed was estimated at 25-30% while lasing, due to the ratio 

of pump wavelength (1.9 µm) to output wavelength (2.5 µm). At the estimated maximum 

absorbed power level (80% of 20 W), the total heat load in the laser disk was estimated at 
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5 W, yielding an estimated thermal lens focal length of 8 cm if a thick disk had to be 

used.  Note that this 8-cm focal length is for one pass through the disk.  Since the disk is 

used as a cavity mirror, light passes through the thermal lens twice, making the laser disk 

act like a concave mirror with radius of curvature fth. 

The following plots show cavity stability and mode radius as a function of cavity 

length and output coupler radius of curvature to show the parameter space that the disk 

laser demonstration was likely to operate in.  Figure 4-2 shows stability for negligible 

thermal lensing.  Figure 4-3 shows the mode radius at the laser disk for the case of 

negligible thermal lensing for a selected set of output mirror curvatures: concave mirrors 

with radius of curvature values of 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm.   Figure 4-4 

shows stability for the case of the predicted 8-cm focal length thermal lens at full pump 

power.  Figure 4-5 shows the mode-radius at the laser disk for the case with 8-cm focal 

length thermal lens, using the same set of output coupler curvatures as in Figure 4-3.  
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Figure 4-2.  Stability Diagram for Disk Laser Design Parameter Space, Negligible 
Thermal Lensing 

 

Figure 4-3.  Cavity Mode Radius at the Laser Disk as a Function of Cavity 
Parameters, Negligible Thermal Lensing 
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Figure 4-4.  Stability Diagram for Disk Laser Design Parameter Space, Strong 
Thermal Lensing (fth = 8 cm) 

 

Figure 4-5.  Cavity Mode Radius at the Laser Disk as a Function of Cavity 
Parameters, Strong Thermal Lensing (fth = 8 cm) 
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Ideally, the thermal lensing would be negligible in the disk laser. In this case, the 

cavity is stable when cavity length is less than the output mirror radius of curvature.   

Mode radius increases with output coupler radius.  Looking at Figure 4-3, acceptable 

mode radius can be obtained using mirrors with radius of curvature no shorter than 20 cm 

concave curvature (cmcc).  The 20-cmcc mirror produces multi-mode operation, while 

the 50-cmcc mirror produces either single mode operation or multi-mode operation, 

depending on the cavity length. Cavity length of 50% of the mirror radius of curvature 

produces the maximum mode-radius. Mirrors with radius of curvature longer than 50 cm 

could be used in theory, but then the lab setup becomes more difficult to align and more 

vulnerable to disturbance.  There is no need to use mirrors with radius any longer than 

that required to produce adequate mode overlap. Thus, the basic design for the disk laser 

if thermal lensing proved to be negligible was a 25-cm long cavity with a 50-cm radius of 

curvature mirror for single-mode operation, and a 10-cm long cavity with 20-cm radius of 

curvature mirror for multi-mode operation. 

If the thermal lensing proved to be significant despite the disk laser configuration, a 

different cavity design would be needed. There are two modes of operation in the case of 

strong thermal lensing:  a short cavity with cavity length in the range of d < fth (and 

d<R), and a long cavity with R< d < fth + R.  Both modes of operation produce 

similar distributions of cavity mode radius at the laser disk as a function of cavity 

parameters. In addition, the cavity mode size at the laser disk is almost identical for all 

five mirror curvatures used, given the 8-cm focal length thermal lens used in the model. 

A cavity mode radius of about 0.3 mm is readily obtained, within the range for efficient 
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multi-mode operation but definitely out of the range for efficient single-mode operation. 

At least this cavity does not need mirrors different than those used in the case of 

negligible thermal lensing: merely a cavity length change is needed.    

4.4 Summary of Cr2+ Laser Design for Power Scaling Experiments 

The final Cr2+ laser design was a 5-W Cr2+:ZnSe laser operating at 2.5 µm, pumped 

by a 20-W (CW or high repetition-rate Q-switched) 1.9-µm Tm:YLF pump laser with a 

1-mm diameter beam. A multiple-pass pumping system of at least 8 passes ensured at 

least 80% pump absorption in the Cr2+ laser disk.  The Cr2+:ZnSe disk would be low-loss, 

with 0.25-mm thickness and 1019 cm-3 Cr2+ concentration, coated anti-reflective (AR) on 

the input face, and highly-reflective (HR) on the rear face. The rear face of the disk 

would be mounted directly on a water-cooled heat sink to prevent overheating and 

subsequent loss of laser efficiency.  The Cr2+ laser would use a simple standing wave 

cavity with cavity mirrors consisting of a partially reflective concave output mirror and 

the HR coating on the rear face of the laser disk.  Concave output mirrors with 

reflectivity in the range of 90%-97% and radius of curvature in the range of 20-50 cm 

would be sufficient to ensure efficient laser operation.  Under these conditions, the Cr2+ 

disk laser should produce 6-6.5 W maximum output power at slope efficiencies in the 

range of 45-65% and thresholds of 380-950 W/cm2. 
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5 Pump Source Design and Performance 
 
 

This chapter discusses the design and performance of the pump laser constructed for 

this research.  At the start of this research, the available pump lasers in the lab at the 

appropriate wavelengths for pumping Cr2+  were diode-pumped, liquid-nitrogen cooled 

Tm,Ho:YLF lasers, producing up to 5 W each at 2.06 µm, operating CW or Q-switched 

with repetition rates of 1-20 kHz..  Although these lasers worked well in Cr2+ 

experiments, a pump laser was needed that could produce the 15-20 W required for the 

power scaling experiments and not be subject to interruptions every 30-minutes for 

refilling liquid nitrogen dewars. It became necessary to build a high power pump laser.   

5.1 Pump Laser Design 

The basic design was that of a cryogenically-cooled, end-pumped, bulk solid-state 

laser configured for CW or Q-switched multi-mode operation.  Existing pump lasers in 

the lab used Tm,Ho:YLF which operates at 2.06 µm.  The high power pump laser needed 

to operate near 1.9 µm to increase pump absorption efficiency in the thin Cr2+:ZnSe  

disks.  Since both Tm:YLF and Tm,Ho:YLF can be pumped at the same diode laser 

wavelength (Tm3+ absorbs the light in both cases), the high-power pump laser was 

designed to work with both Tm,Ho:YLF and Tm:YLF crystals.  The evolution of the 

laser design resulted in two final configurations: one for Tm:YLF operation at 1.89 µm 

(Figure 5-1) and one for Tm,Ho:YLF at 2.06 µm (Figure 5-2).  

Both configurations shared the same pumping scheme. Two 25-W fiber-coupled 

diode lasers supplied the pump power at 792 nm, which was 1:1 relay-imaged into the 
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laser crystal through each end, producing an 800-µm diameter pumped volume inside the 

laser crystal, which could be either 6%Tm,1%Ho:YLF for 2.06-µm operation or 

5%Tm:YLF for 1.89-µm operation. The diode lasers were clamped to a water-cooled 

aluminum block and maintained at 289 K by a precision chiller to prevent the diode 

wavelengths from changing (which would change the 2-µm laser output power). The 

Tm,Ho:YLF crystal dimensions were 4x4x7 mm3, with the long dimension being along 

the laser axis.  The Tm:YLF crystals dimensions were 4x4x20 mm3, with a 12-mm long 

doped region and two 4-mm long undoped end-caps (added to reduce risk of thermal 

fracture).  A copper heat sink held either laser crystal and was maintained at ~150 K by a 

“Cryo-Tiger” closed-cycle cryogenic cooler with 30-W capacity. Due to the cryogenic 

cooling, the crystal had to be placed in an evacuated housing equipped with windows and 

dichroic beamsplitters to allow pump light to get in and resonated light to pass through. A 

vacuum roughing pump was used to periodically evacuate the housing to maintain 

vacuum insulation and prevent build-up of frost.  (Most of the time the pump was simply 

left on).  

The resonator design for both configurations was a simple multi-mode standing wave 

cavity.  The multi-mode design was intentional, as it had been found that TEM00 

operation resulted in not only less output power, but also a greater likelihood that the 

laser would be damaged during operation.  For the Tm,Ho:YLF configuration, the 

resonator consisted of the HR coating on the rear face of the crystal, the crystal itself, a 

20-cm focal-length intracavity lens placed 12 cm from the crystal to provide cavity 

stability, and a flat 70% reflecting output coupler placed 12 cm from the lens. The 
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Tm:YLF resonator consisted of a 38-cm long symmetric cavity with the crystal in the 

middle and mirrors with 20-cm radius of curvature placed at each end.  Of course, the 

Tm:YLF crystal faces were both AR coated. Output coupler reflectivity for the Tm:YLF 

resonator was 70%, the same as for the Tm,Ho:YLF configuration. There were other 

optics in the resonators that did not significantly impact resonator stability, such as an 

acousto-optic modulator, the dichroic beamsplitters, and dewar windows. In addition, it 

was useful to put an uncoated piece of lithium niobate at Brewster’s angle inside the laser 

cavity to ensure that output was completely polarized.  

70%R, 20 cmcc 
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Figure 5-1.  Schematic of Basic Pump Laser Design (Multi-Mode Tm:YLF 
Configuration) 

 



 

 5-4

Laser Crystal 
(6%Tm,1%Ho:YLF)  

Relay Imaging 
Lenses (f = 6 cm) 

800 micron 
Optical Fiber 

792-nm  
Diode Laser 
25 W 

CryoTiger 
Cooler 

A/O 
Q-switch 

Flat 70%R 
Output Coupler 

Vacuum Housing 

Cold 
Finger 

HR Mirror 
Coating 

Intracavity Lens 
f = 20 cm 

 

Figure 5-2.  Schematic of Pump Laser Design, (Multi-Mode Tm,Ho:YLF 
Configuration) 

5.2 Pump Laser Performance 

Although the cavities used were different, both the Tm:YLF and Tm,Ho:YLF laser 

configurations in the end produced more than 15 W at 50-W diode laser input power for 

the two intended modes of operation:  Q-switched at 10 kHz repetition rate, and 

continuous-wave. This corresponds to an optical-to-optical conversion efficiency of 30%.  

Beam parameters and output power did not differ significantly between the Q-switched 

and CW modes of operation.  The Tm:YLF configuration produced 1.89-µm output with 

~5 M2 at full power.  The Tm,Ho:YLF configuration produced 2.06-µm output with ~3 

M2 at full power.  In Q-switched mode, pulse-widths in the range of 0.3-1 µs were 

produced, depending on the diode input power and hence pulse energy. The beam 

parameters changed at different diode laser input power levels, so the pump laser was 

simply designed to run at maximum output power at all times, with attenuation taken care 
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of outside the resonator.  The laser could run at the same power level for extended 

periods, making it convenient to use in the Cr2+ experiments.  It worked as designed, 

except that the output power of 15 W was less than the 20 W predicted. More power 

could be wrung from either pump-laser configuration, but only under conditions that 

tended to cause damage to the pump laser optical components.  

For both CW and Q-switched operation the average output power stayed stable to 

within 10% over the course of a full research day, though over the course of weeks the 

maximum laser power tended to diminish.  When  power dropped below acceptable 

levels, the laser had to be ‘overhauled,’ which consisted of cleaning the crystal and 

translating the pump beams to a new, undamaged spot to regain full efficiency . This 

process could be performed as many as 6 to 7 times for a single laser crystal, providing 

on average 6 months to a year of satisfactory laser operation per crystal as long as 

catastrophic damage was avoided. The root cause for the damage remains unknown, but 

‘rogue pulses’ and dust deposited by condensation are likely candidates. Obviously, this 

pump laser did require regular maintenance, which added up to a lot of time over the 

course of this research. Fortunately, the evacuated housing was designed to be easy to 

open and service.  The only difficulty was there was no way to quickly warm up the cold 

finger if a crystal needed to be cleaned or replaced after it was cooled down.  It took ~5 

hours for the system to warm up, but only ~30 minutes to cool down.  If a crystal was 

damaged while running the laser, every effort was made to translate the diode pumped 

spot to a clean crystal location and thus spare 5 hours of lost warm-up time. 
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Although average output power was stable on the hour time scale for CW operation, 

it was not stable at the microsecond time scale, showing sinusoidal oscillations with 

modulation depth anywhere from 20%-100%.  This was a consequence of using the 

recirculating cooling system to keep the crystals cold, as it produced strong vibrations 

that could not be damped out.  Turning off the cryogenic cooler drastically improved the 

amplitude stability at microsecond time scales, but obviously the cooler could not be left 

off long enough to perform experiments.  Other ways to reduce the high frequency 

oscillations were through cavity alignment or by placing an etalon in the laser cavity and 

aligning it while watching the high-frequency output intensity variation on an 

oscilloscope.  For the most part, however, the high frequency oscillations on the CW 

output were just ignored as they did not affect the Cr2+ laser operation.   

Q-switched operation did not show similar vibration-induced instability, but had its 

own set of constraints. First, the pulse-width of laser output was determined by the pulse 

energy and the laser cavity (as might be expected).  1-mJ pulses had widths of ~300-500 

ns and 100-µJ pulses had widths of ~1 µs.  The actual pulse-widths seen for a given 

experiment were found to vary considerably as a function of fine alignment of the laser 

cavity mirrors. Second, the higher the repetition-rate, the more timing-jitter and variation 

in pulse energy there was in the pulse train. For 10 kHz operation at full power, timing 

jitter was within1 µs, and pulse energy variation was roughly 30%, although ‘rogue 

pulses’ with energy more than 2 times the average were observed to occur infrequently.  

If, for some reason, a particular pulse did not start or was of lower than average energy, 

the stored energy remaining in the laser material would ‘keep’ until the next opening of 
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the Q-switch, due to the ~2 ms lifetime of Tm:YLF.  In fact, at 10-kHz repetition rate, 

energy could be stored efficiently over as many as 20 pulses, leading to pulse energy 

fluctuations.  Third, for both configurations, the laser crystal and beamsplitter surfaces 

were found to have an optical surface damage threshold corresponding to 2 mJ of output 

energy per pulse with the 70%R mirror.  This damage threshold had to be kept in mind 

when choosing the repetition rate of the Q-switch.  The long excited state lifetimes of 

Tm:YLF and Tm,Ho:YLF allowed storage of more than 30 mJ of energy inside either 

kind of laser crystal at the highest diode pump powers, 15 times the laser damage 

threshold.  Thus, setting the 15-W Tm:YLF laser to run Q-switched at 500-Hz repetition 

rate would result in a pump laser catastrophe. This damage restriction resulted in two 

main pulsed operation modes: 10-kHz repetition-rate at full power for Cr2+ laser power 

scaling tests, and 500-Hz operation at less than 500-mW output power for spectroscopy 

which required short, identical pulses with high energy, low timing jitter, and small 

thermal load. Finally, due to the likelihood of damage, it was always advisable to run the 

pump beam through a Faraday isolator to prevent accidental feedback from causing 

havoc. 

5.3 Summary 

With considerable effort and financial outlay, a high power 2-µm pump laser was 

constructed for the Cr2+ power scaling research. This laser produced 15 W of average 

output power with M2 of 5 or less, at either 1.89 µm or 2.06 µm, in CW operation or as a 

train of Q-switched pulses with ~500-ns pulse width and 10-kHz repetition rate.  Stability 

was good on the scale of hours (where it needed to be good), but suffered on time scales 



 

 5-8

of weeks due to the accumulation of incremental crystal-surface damage, and time scales 

of microseconds due to vibration-induced relaxation oscillations. Since the beam 

divergence changed as a function of diode laser input power, it proved easiest to run the 

laser at maximum power at all times and attenuate the output beam outside the resonator. 

The laser was not foolproof, and learning what part of its performance envelope to avoid 

was a time-consuming and expensive task.  The damage threshold of optical surfaces 

inside the laser limited output pulse energy to 2 mJ, restricting Q-switched operation at 

full power to repetition rates of 10 kHz or higher.  In the end, however, it got the job 

done, providing enough power for the Cr2+ power scaling experiments and enough 

control for the Cr2+:II-VI spectroscopic characterization efforts.  It certainly was an 

immense improvement over the 5-W liquid-nitrogen-cooled lasers present in the lab at 

the start of this research effort.     
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6 Cr2+:ZnSe Disk Laser Experiments 
 
 

This chapter is concerned with describing and evaluating the performance of the 

Cr2+:ZnSe disk laser.  First, the overall disk laser concept and intended resonator design 

are briefly described, putting the rest of the chapter in proper context by showing the 

design goals and expected performance of the Cr2+:ZnSe disk laser.  The Cr2+:ZnSe disks 

are then discussed, summarizing manufacture, characterization, and heat-sink mounting 

techniques.  Next, the three main disk laser experiments are presented: two power-

handling experiments using 8-pass and 16-pass pumping systems, and an experiment 

investigating mode-coupling efficiency. Afterwards, the results of the Cr2+:ZnSe disk 

laser experiments are summarized and evaluated with respect to the design goals. 

6.1 Disk Laser Design 

As mentioned earlier in Section 2.3.3, the disk laser is essentially an end-pumped rod 

laser in which the laser rod has a large diameter to thickness ratio.  Figure 6-1 shows the 

basic design schematic. One disk face is coated AR; the other face is coated HR and 

mounted on a heat sink for face cooling.  The disk acts both as the gain element and as an 

HR mirror of the optical cavity.  Pumping is done through the AR face, at an angle to 

avoid the use of extra dichroic mirrors in the resonator.  The face-cooling aspect of the 

disk laser architecture minimizes radial thermal gradients in the disk and thus reduces 

thermal lensing to manageable levels.  
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The Cr2+:ZnSe disk laser design described in Chapter 1 was for a simple, two mirror 

standing wave laser using a 0.25-mm Cr2+:ZnSe disk with 1019 cm-3 Cr2+ doping, a 97%R 

output mirror with concave radius of curvature anywhere from 20-50 cm, and a 1-mm 

beam diameter.  On paper, this design produced 6-W output power at 20-W input pump 

power.  Once all the parts were purchased and the experiment set up, it soon became clear 

that this design was overly optimistic.  The maximum pumping achievable at the disks 

turned out to be ~12 W, due to a maximum pump-laser power of ~15 W and ~30% optics 

losses due to polarizers with unexpectedly poor transmission. 

The main difficulty with the thin disk laser design was thus ensuring the pump laser 

was absorbed efficiently.  To maximize chances of success, disks of different thickness (1 

mm, 0.5 mm, 0.25 mm) were purchased, and two multiple-pass pumping systems (8 pass 

and 16 pass) were designed.  

6.2 Laser Disks 

The laser disks used in this experiment were made of ZnSe with chromium diffused 

in by extended annealing at high temperatures.  Two doping runs (using different 

conditions) were commissioned from Spectragen, resulting in Cr2+:ZnSe samples with 
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Figure 6-1.  Schematic of Disk Laser Concept 
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different doping concentrations.  The Cr2+:ZnSe from each doping run was processed into 

three 10x10 mm2 wide disks of different thickness: 1 mm, 0.5 mm, and 0.25 mm.  Thus, 

there were six disks, with three disk sizes and two Cr2+ doping levels.   The doping levels 

were designated as ‘standard’ and ‘2x’ (double) Cr2+ doping.  The 2x doping took 7 days 

at 1000 C.  The standard doping took 5 days at slightly lower temperature. These doping 

runs attempted to produce the highest Cr2+ concentration possible in the ZnSe while still 

maintaining reasonable optical quality and Cr2+ emission lifetime.  Transmission and 

bleaching measurements indicate that the maximum Cr2+ doping in the disks (produced 

by the ‘2x standard’ doping) was around 2-5x1019 cm-3.  This high doping level was 

present only in the 2x-doped 1-mm thick disk.  The other disks (such as the 2x-doped 0.5-

mm disk) contained at least a factor of two less.   

It is hard to tell just how much this difference in Cr2+ concentration depended on the 

doping parameters, given the post-processing steps required.  Apparently, the high 

temperature annealing tends to cause enough vapor transport leave the surfaces of the 

samples quite rough.  To obtain enough clear aperture, larger samples are doped, then 

ground down to the required sizes.  This has the unfortunate side effect of grinding away 

most of the highly doped areas in each piece of Cr2+:ZnSe.  Samples apparently start out 

much the same size, so fabricating a thinner disk means simply grinding the doped 

sample down more, which amounts to removing more of the highly doped outer layers of 

the sample.  Thus, the thinnest disks also had the lowest Cr2+ doping concentrations – a 

bad trend because the thinnest disks need high Cr2+ doping the most to ensure efficient 

absorption of the pump laser.  Another consequence of this processing technique was that 
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a radial concentration gradient was present on all the disks, with as much as a factor of 

three higher Cr2+ concentration around the edge of the each disk than in the middle.   

The unexpectedly low Cr2+ doping of the thinner disks rendered the 0.25-mm disks 

effectively unusable, and the 0.5-mm disks questionable.   The disks ultimately used in 

laser experiments were the ‘2x’-doped 1-mm and 0.5-mm disks.  The 1-mm disk had an 

absorption coefficient of 10.6 cm-1 (in the middle) and a Cr2+ fluorescence lifetime of ~4 

µs.  The 0.5-mm disk had an absorption coefficient of 6 cm-1 (in the middle), and a Cr2+ 

fluorescence lifetime of ~8 µs.   

Once the disks arrived and were examined, they were sent out for optical coating.  

The disks were designed to act as ‘active mirrors’ in the disk laser resonator, with both 

the pump light and the resonated light entering and exiting the disk through one face 

only.  Therefore, one face of each disk was coated antireflection at the pump and 

resonated wavelengths (1.89-2.06 µm and 2.5 µm respectively), and the other face was 

coated for maximum reflectivity at those wavelengths.  The mirror-coated face was 

designed to be fastened or bonded to a heat sink, for management of the disk temperature 

during laser operation. To aid in the bonding, each disk had an extra metallic gold coating 

applied on top of the mirror coating.  Although the 0.25-mm disk with ‘standard’ doping 

did not survive the coating process, the other five made it unscathed, in excellent 

condition. 

The resulting laser crystals were of good optical quality.  The surfaces were flat and 

smooth, the coatings were good, and the samples showed low internal loss.  The 0.5-mm 

2x-doped disk had roughly 2-3% overall round-trip loss for 2.5-µm light incident slightly 
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off axis.  The 1-mm 2x-doped disk had slightly more loss, which varied depending on the 

exact position examined on the disk (but not more than 5-8%).  This amount of loss is 

fairly typical for Cr2+ crystals coated for these wavelengths, and was not enough to cause 

problems in the laser experiments.  

The two most promising Cr2+:ZnSe disks, the 2x-doped 1-mm and 0.5-mm disks, 

were permanently mounted on individual heat sinks. The heat sinks were copper rods 

with one end faced off flat for mounting the disks, and the other end fitted with a 

compression pipe fitting for interfacing with a water circulation system.  During laser 

operation, water circulated through a hole in the end of the heat sink tube with the pipe 

fitting to provide cooling.   

The 1-mm disk was mounted first, using solder.  The heat sink was tinned, cooled 

down, and then re-heated with the disk in place.  A precarious situation ensued, with the 

disk floating on the tinned heat sink surface without sticking, but the use of rosin flux and 

light pressure and sideways movement applied by a pointed (soft, insulating) wooden 

stick caused the disk to finally stick.  After the disk and heat sink cooled down, a final 

inspection indicated a successful mounting.  Under strong visible lighting, one could see 

that the action of the flux and solder had mottled the gold coating on the back of the disk.  

Fortunately, the dielectric coating still held up under CW and Q-switched pumping.   

Given that the solder technique (with flux) was a bit risky, the 0.5-mm disk was 

epoxied to its heat sink using conductive silver epoxy.  This mounting technique was safe 

and easy, but ended up being somewhat unsatisfactory in the long haul.  It seemed to 

allow the disk to flex or bubble a bit during intense CW excitation, and the distortion 
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would remain when the pump power was removed.  After several experiments with 5-

10W CW pumping in a 1-mm diameter beam, there were several 1-mm diameter 

permanent concavities in the rear surface mirror coating. No actual thermal fracturing of 

the entire disk was ever seen, just smooth lens-like concavities.  In the end, the mounting 

techniques were good enough for laser experiments to be successful for both disks, but 

would need to be significantly improved to ever be considered reliable.  Probably some 

technique of pressing the disk into a bed of indium on its heat sink and holding it in place 

while it is used would be the best.  Developing such a technique was beyond the scope of 

this research. 

In summary, the outcome of two doping runs, material processing, optical coating, 

crystal triage, and heat sink mounting were two diffusion-doped Cr2+:ZnSe disks, 

mounted and ready for laser experiments:  a 1-mm thick disk with 10.6 cm-1 absorption 

coefficient at the 1.89-µm pump laser wavelength and ~5% round-trip loss at the  2.5-µm 

Cr2+ laser wavelength, and a 0.5-mm thick disk with 6 cm-1 absorption coefficient at 1.89 

µm and ~3% round-trip loss at 2.5 µm.  The other disks purchased were never tested due 

to their unsatisfactory Cr2+ doping levels. 

6.3 8-Pass Power Handling Experiment 

An 8-pass pumping experiment was the first attempt at lasing the Cr2+:ZnSe disks. 

The experiment used a 2.06-µm Tm,Ho:YLF laser as the pump source, and an 8-pass 

pumping system made from extra optics on hand.  Use of this pump laser wavelength 

reduced the absorption coefficients in the disks by roughly a factor of three from their 

values at 1.89 µm, resulting in inefficient pumping of the 0.5-mm disk. Therefore, only 
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the 1-mm disk was used in this experiment. Despite the sub-optimal pumping, the 

experiment turned out quite well and indeed achieved record Cr2+ laser output power at 

the time, and the highest Cr2+ laser output power demonstrated in this entire set of laser 

experiments.  

    The Cr2+:ZnSe disk laser, shown in Figure 6-2, consisted of a pump laser, the 

Cr2+:ZnSe disk, an output coupler, and multi-pass pumping optics.  The pump laser, 

which was a Q-switched Tm,Ho:YLF laser with 9-W average power at 2.06 µm, 10-kHz 

pulse repetition rate, was focused to a radius of 0.5 mm at the disk.  The 1-mm thick 

Cr2+:ZnSe disk was used in this experiment, because it readily absorbed the pump laser in 

just a few passes.  The output coupler was a 90% reflecting, 10-cm concave radius of 

curvature mirror placed 8 cm from the surface of the disk. Although this cavity length 

and mirror curvature combination was not a part of the intended laser design, it was the 

only configuration found that performed well. The multi-pass pumping system consisted 

of a 10-cm focal length lens, a flat mirror, and a 30-cmcc curved mirror that were used to 

image the pump laser back onto the disk with unity magnification four times to yield 

eight one-way passes.  Eight-pass pumping provided 95% pump light absorption.  The 

pump beam was aligned off axis to eliminate the need for dichroic mirrors in the 

resonator and produced an elliptical [2 mm x 1 mm] gain region. 
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The Cr2+:ZnSe laser produced up to 4.27 W of output with 9-W input (see Figure 

6-3).  Threshold was 612 mW (61 µJ/pulse), and slope efficiency was 50% with respect 

to incident pump power.  Overall optical efficiency at full power was 47%.  This agrees 

with the model prediction of 690 mW threshold (8.8 mJ/cm2) and 54% slope efficiency 

for a 1-mm diameter pump beam.  This Cr2+ laser was stable and ran for over six hours 

with less than 2% variation in average output power.  This configuration showed no sign 

of efficiency rolloff at higher pump power, the typical effect of thermal lensing.  Other 

configurations having output mirrors with longer radii of curvature, or having longer 

cavity lengths showed considerably reduced output efficiency.  A smaller pump beam 

diameter led to increased radial thermal gradients and instability of the laser cavity.  Thus 

the ~1-mm diameter incident pump spot size represents the smallest useful pump spot 

size with respect to the 1-mm thick disk for this system, and the 8-cm long multi-mode 

resonator produced the highest coupling efficiency. 
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Figure 6-2.  Configuration of Disk Laser with 8-pass Pumping System 
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The Cr2+ output beam was elliptical in shape with divergence that was 3 and 6 times 

diffraction limited along the minor and major beam axes, respectively. Output beam 

quality did not significantly change as a function of pump power.  Laser bandwidth at full 

power was 56 nm FWHM, centered at 2500 nm – typical for a free-running pulsed Cr2+ 

laser with broadband mirrors.  Output pulse width was 220 ns, consisting of a short gain-

switched pulse followed by a longer pulse that lasted for the duration of the 290-ns 

FWHM pump pulse.  Bandwidth and temporal profiles are shown in Figure 6-4 and 

Figure 6-5. 

Incident Pump Power (W)

0 2 4 6 8 10

C
r2+

:Z
nS

e 
O

ut
pu

t (
W

)

0

1

2

3

4

5

 

Figure 6-3.  Cr2+:ZnSe Disk Laser Input/Output Plot, 1-mm Disk, 8-Pass Pumping 
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Figure 6-4.  Cr2+:ZnSe Laser Bandwidth at 4-W Output Power Using 90%R,         
10-cmcc Output Coupler and 1-mm Disk, 8-Pass Pumping 
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Figure 6-5.  Temporal Profile of Pump and Cr2+:ZnSe Laser Output Intensity, 4-W 
Output Power, 10 kHz Gain-Switched Operation 
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This resonator configuration did not allow for CW Cr2+ laser operation.  Reaching 

Cr2+ laser threshold with CW pumping requires approximately 10-15 times more average 

power than with 10 kHz Q-switched pumping, on the order of 7-15 W for the 1-mm disk 

with 1-mm beam diameter and the 90%R output mirror.  The thermal lensing present at 

these CW pump power levels prevented the Cr2+ laser from working, and in any case the 

pump laser could not supply more than 11 W on the crystal.  CW operation required 

lower threshold resonators with less thermal lensing and hence required the use of the 

thinner, 0.5-mm disk and a more effective pumping scheme. 

In summary, the 8-pass disk laser experiment showed that the disk laser concept 

could be used to make a Cr2+ laser with output power in the 5-W range, the goal of this 

research. The 1-mm Cr2+:ZnSe disk laser performed well with Q-switched excitation in a 

1-mm diameter beam, producing 4.3-W output power with slope efficiency of 50% and 

overall optical efficiency of 47%.  The threshold and slope efficiency agreed fairly well 

with the model predictions assuming 1-mm diameter pump beam, short-pulse excitation, 

5% passive loss, and no bleaching of the Cr2+ absorption. However, the output was highly 

multi-mode due the cavity design, and attempts to improve the beam quality by 

increasing the cavity mode size at the laser disk resulted in considerable reduction in laser 

efficiency not predicted by the simple qualitative mode-overlap analysis technique.   

6.4 16-Pass Power Handling Experiment 

A 16-pass pumping system was built, based on a design obtained from the 

literature[25], which could efficiently pump the 0.5-mm disk.  A new set of experiments 

was then conducted to examine the power-handling performance of the mounted 1.0-mm 
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and 0.5-mm disks. Most of these experiments were done using the new 1.89-µm Tm:YLF 

pump laser, which allowed the 0.5-mm disk to be tested as well.  This section presents 

the design and characterization of the 16-pass pumping system and discusses the power-

handling experiment performed with it.   

6.4.1 Description of 16-pass Pumping System 

The 16-pass pumping system consisted of a 2-in. diameter, 2-in. focal length concave 

silver mirror, the Cr2+:ZnSe disk, three roof prisms and a flat mirror. Figure 6-6 shows a 

side view schematic of the pumping system, and Figure 6-7 shows a schematic and a 

digital picture of a frontal view of the assembly with disk, prisms, and flat mirror. Note 

that the roof prisms, concave mirror, and flat mirror all were on tip-tilt stages with a 

common back-plane, enabling consistent alignment of the optics.   

 
The 16-pass pumping system was set up so that the incoming pump light would be 

relay-imaged onto the crystal 8 times, for a total of 16 one-way passes.  The schematic in 
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Figure 6-6.  Side View Schematic of 16-Pass Pumping System 
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Figure 6-7 shows the sequence in which the pump beam encountered the prisms and flat 

mirror, with numbers indicating the sequence order and circles indicating the clear 

aperture at each location. Pump light entered the system through the hole at location 1 

(above the Cr2+:ZnSe disk), hit the concave mirror, and was focused onto the disk one 

focal length away.  The pump light passed through the disk, reflected off the HR coating 

of the rear surface, passed through the disk again and traveled back to the concave mirror, 

resulting in the first two absorption passes.  The mirror collimated the pump beam and 

sent it into a roof prism at location 2.  The roof prism was oriented to produce a 

tangential displacement of the pump beam to location 3 before reflecting it back towards 

the concave mirror.  After once again hitting the concave mirror, the pump beam was 

focused back onto the disk for the third and fourth absorption passes.  The remaining 

pump beam went on to the concave mirror, was collimated again, and was sent into the 

second roof prism at location 4.  The pump beam was translated tangentially to location 

5, then reflected back to the concave mirror.  Once again, the concave mirror focused the 

pump beam onto the disk to obtain the fifth and sixth  pump passes.  The remainder of the 

pump beam was reflected back onto the concave mirror, collimated, and sent to the third 

roof prism at location 6.  After another tangential beam translation to location 7, the 

pump beam went back to the concave mirror and was sent onto the disk for the seventh 

and eighth pump passes.  The remaining pump light went back to the concave mirror, was 

collimated, and was sent to the flat mirror at location 8.  The flat mirror was oriented to 

send the pump beam back the way it came, completing 8 more passes  through the laser 

disk for a total of 16.  
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The absorbed power density in the Cr2+:ZnSe disk laser crystals produced by the 16-

pass system was measured to evaluate the effectiveness of the pumping system and to 

enable accurate heat distributions to be used in the thermal modeling effort performed 

afterwards. The measurement technique employed was to image the fluorescence signal 

from the pumped, nonlasing Cr2+:ZnSe disks onto an infrared camera and to assume that 

the detected fluorescence intensity profile corresponded to the absorbed pump power 

density.  (This technique was not available at the time for the 8-pass experiment, as the 

hardware had not arrived yet).  Naturally, this technique would render longitudinal 

variation in absorbed power not observable, but would fairly accurately record the overall 

transverse absorbed power distribution caused by the multi-pass pumping, since the disks 

were thinner than the depth of field of the imaging system.  The  lack of observability in 

the longitudinal direction was dealt with by assuming a uniform absorbed power density 

in that direction, which is not unreasonable given the multiple-pass pumping.  
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Figure 6-7.  Front View Schematic and Picture of the Cr2+:ZnSe Disk and Pump 
Translation Prisms in the 16-Pass Pumping System. 

(These pictures are described in detail in the text) 
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Fluorescence signal images of the pumped Cr2+:ZnSe disks were recorded with an 

Electrophysics PV-320 IR camera for five cases (using 1.89-µm pumping), representing a 

good sample of the pumping conditions found for the laser experiments and in the later 

thermal characterization experiments. The fluorescence image bitmaps were loaded into 

Matlab, then each intensity map was normalized, converting it into a transverse 

fluorescence intensity distribution.  These fluorescence distributions were compared with 

super-Gaussian functions to determine the best approximate representations of the 

transverse pumping distributions in that could be used in thermal modeling or mode-

coupling analyses.  The approximate curve fits are shown in Table 6-1.  In addition, 

fluorescence images and intensity cross section plots are shown for case 1 (Figure 6-8, 

Figure 6-9) and Case 2 (Figure 6-10,Figure 6-11).  For reference, the input pump beam 

had a transverse intensity distribution approximating a 4th order Super-Gaussian with 0.4-

mm radius for all cases.  

Table 6-1.  Estimated Transverse Absorbed Power Distributions in Pumped, 
Nonlasing Cr2+:ZnSe Disks from Fluorescence Measurements 

 
Case: Disk 

Thickness:
Pumping: Transverse Absorbed Power Distribution  

1 1.0 mm 5 W CW  N=4 Super Gaussian, 0.41-mm Radius 
2 0.5 mm 5 W CW  N=4 Super Gaussian, 0.45-mm Radius 
3 1.0 mm 5 W Q-Sw.  N=4 Super Gaussian, 0.45-mm Radius 
4 0.5 mm 5 W Q-Sw.  N=5 Super Gaussian, 0.6-mm Radius 
5 1.0 mm 5 W Q-Sw. Fiber  N=4 Super Gaussian, 0.5-mm Radius 
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Figure 6-8.  Fluorescence Image from 1-mm Disk with 5-W CW Pumping 
This is an image of Cr2+ fluorescence detected by an IR camera, looking at the 1-mm 
Cr2+:ZnSe laser disk on axis.  The image represents transverse absorbed pump power 

distribution in the disk when the 16-pass pumping system is used. 
 

 

Figure 6-9.  Absorbed Power Density in 1-mm Disk with 5-W CW pumping 
This plot shows a cross section of the estimated absorbed power density in the laser disk, 
obtained by appropriately normalizing the fluorescence image of Figure 6-8.  The dotted 
line corresponds to an approximate curve fit of a 2-D Super Gaussian of fourth order and 

0.41-mm radius.
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Figure 6-10. Fluorescence Image from 0.5-mm Disk with 5-W CW Pumping  
This is an image of Cr2+ fluorescence, looking at the 0.5-mm Cr2+:ZnSe laser disk on 
axis.  The image represents transverse absorbed pump power distribution in the disk 

when the 16-pass pumping system is used. 
 

 

Figure 6-11. Absorbed Power Density in 0.5-mm Disk with 5-W CW pumping 
This plot shows a cross section of the estimated absorbed power density in the laser disk, 
obtained by appropriately normalizing the fluorescence image of Figure 6-10.  The dotted 
line corresponds to an approximate curve fit of a 2-D Super Gaussian of fourth order and 

0.45-mm radius. 
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Translating the crystal in or out of the multiple-pass system changed the locations of 

where each pump pass hit the disk, allowing each pass to be seen separately at the same 

time by looking at the overall image of disk fluorescence.  Using this technique, it was 

possible to see all eight spots (from the 16 one-way passes) on the 0.5-mm disk, all 

approximately the same size.  Only the first four passes were visible for the 1-mm disk, 

due to its high absorption coefficient.  In addition, further investigation using heat 

sensitive liquid crystal film to detect the size of the pump beam at each optic in the 

multiple-passing system indicated that the pump beam grew in size at the prisms only a 

moderate amount after each set of passes.  Even the case which used fiber-launched 

pumping with M2 of ~20 did not experience clipping of the pump beam in the 16-pass 

optical system. Thus, the increase in M2 of the pump beam after successive passes 

through the disk and optical system did not degrade the effectiveness of the pumping 

system. 

6.4.2 Laser Experiment 

The first disk laser experiment simply repeated the 8-pass pumping experiment for 

both disks, using the new 16-pass pumping setup.  The configuration of this experiment is 

shown in Figure 6-12.  The pump laser beam was run through an isolator and variable 

attenuator into the disk laser gain module to pump the Cr2+:ZnSe disk.  The Cr2+ laser 

resonator consisted of the disk (with rear surface coated highly reflective) and a partially 

reflective output coupler with concave radius of curvature.  The disk was placed one 

focal length away from the 50.8-cm focal length concave mirror; an intermediate lens 

was used to focus the pump beam to the correct size and divergence as it hit the concave 
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mirror.  It was advantageous for the pump beam to be multi-transverse mode to prevent 

unnecessarily small spot sizes at the concave mirror.  A pump beam with M2 = 7 was 

used, maintaining a beam radius close to ~0.5-mm throughout the 16-pass system (and 

0.4-mm diameter at the disk).  Pumping was done both Q-switched at 10 kHz and CW. 

The Cr2+:ZnSe laser output mirrors used in this experiment were: 97% R with 10-cm 

concave (cmcc) radius of curvature, 90% R with 10-cmcc radius of curvature, and 85% R 

with 20-cmcc radius of curvature.  It was obvious from the 8-pass experiment that the 

highest efficiency came from a 10-cmcc output mirror placed at 8-10 cm from the Cr2+ 

disk.  However, only 90% R and 97% R mirrors were available in this short radius.  Thus, 

disappointing results were obtained with the 85% R mirror. 
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Figure 6-12.  Configuration of Cr2+:ZnSe Disk Laser for 16-Pass Pumping 
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The results of the 16-pass disk laser experiment are shown in Table 6-2, showing 

input pump power at Cr2+ laser threshold, slope efficiency (with respect to incident pump 

power), and maximum Cr2+ output power for each of the experiment cases.  The results 

for the 8-pass experiment are also shown for reference (the first row only).  The highest 

efficiency Q-switched experiments agreed quite well with the predictions of the 1-D laser 

model, using 3% for the loss in the 0.5-mm disk and 5% for the loss in the 1-mm disk.  

The CW results were disappointing, however.  Slope efficiencies were half that of Q-

switched excitation for the 0.5-mm disk, and the 1-mm disk never lased CW at all.  A 

comparison of the results to the 1-D model is shown for selected cases in Table 6-3, again 

with the 8-pass results in the first row for reference.  

Table 6-2.  Disk Laser Performance 
Disk Pumping 

 
Cavity 
(cm) 

Output Coupler Threshold 
(W) 

Slope 
Eff. (%) 

Output 
(W) 

1 mm 8-pass, Q-sw, 2.06 µm 8 90%R, 10 cmcc 0.612 50 4.27 
1 mm Q-sw., 1.89 µm, 7 M2 10 97%R, 10 cmcc 0.31  31 1.41 
1 mm Q-sw., 1.89 µm, 7 M2 9 90%R, 10 cmcc 0.83 39 3.1 
1 mm Q-sw., 1.89 µm, 20 M2 9 90%R, 10 cmcc 0.76 38 3.3 
1 mm Q-sw., 1.89 µm, 7 M2 9 85%R, 20 cmcc 0.85 35 1.9 
0.5 mm CW, 2.06 µm, 7 M2 11 97%R, 10 cmcc 1.2 22 1.4 
0.5 mm Q-sw., 2.06 µm, 7 M2 8 90%R, 10 cmcc 2.2 ~0 0.005 
0.5 mm CW, 1.89 µm, 7 M2 10 97%R, 10 cmcc 2.3 14 0.4 
0.5 mm Q-sw, 1.89 µm, 7 M2 10 97%R, 10 cmcc 0.18 34 1.64 
0.5 mm Q-sw, 1.89 µm, 7 M2 8 97%R, 10 cmcc .25 40 4.1 
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The Q-switched results generally showed better agreement to the 1-D model, but 

certain cases of the Q-switched results and all of the CW results showed the phenomenon 

of reasonable threshold but poor slope efficiency.  For the high Q resonators with 10-

cmcc output mirrors and Q-switched pumping, the correspondence to the model was 

within the variability seen by simply translating the disks transversely to change the 

pumped location. That variability was likely due to small changes in loss and absorption 

of the pump laser caused by the disks being of non-uniform doping.  All the other results 

showed the phenomenon of reasonably good agreement on threshold but slope efficiency 

significantly worse than expected.  It is suspected that poor mode overlap is to blame for 

the low efficiency that occurs simultaneously with reasonable threshold values.  

Results of the 16-pass experiment yield the following observations:   

1. The disk laser was capable of producing over 4 W with 40% or better slope 

efficiency from each disk, for Q-switched pumping, coming close to the power 

Table 6-3.  Comparison of Disk Laser Results to 1-D Model Predictions 
 
Resonator Measured 

Threshold 
Measured 
Slope 
Efficiency 

Predicted 
Threshold 

Predicted 
Slope 
Efficiency (%)

8 pass, 1-mm disk, 90%R 
Q-sw  

7.8 mJ/cm2 50% 8.8 mJ/cm2 54% 

1-mm disk, 97%R,  Q-sw 4.9 mJ/cm2 31% 5 mJ/cm2 27% 
1-mm disk, 90%R,  Q-sw 13 mJ/cm2 39% 9.4 mJ/cm2 50% 
1-mm disk, 85%R,  Q-sw 13.4 mJ/cm2 35% 11.9 mJ/cm2 61% 
0.5-mm disk, 97%R, Q-sw 3.9 mJ/cm2 40% 3.8 mJ/cm2 36% 
0.5-mm disk, 97%R, CW 190 W/cm2 22% 460 W/cm2 38% 
0.5-mm disk, 97%R, CW 360 W/cm2 14% 460 W/cm2 36% 
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handling design goal of 5 W despite the low pump laser power of no more than 12 

W entering the 16-pass system. 

2. The disks were indeed of good quality, as good results were obtained using high 

Q resonators for both disks.  Based on the slope efficiency values, there was less 

than 5% loss in the 1-mm disk and less than 3% in the 0.5-mm disk.  

3. Laser performance for Q-switched pumping with a 10-cmcc output mirror and 8-

10 cm cavity length agreed well with modeling predictions.  Laser performance 

using longer radius mirrors or CW pumping did not agree well with the modeling 

predictions, showing significantly lower slope efficiency than predicted. 

4. It was not possible to make a resonator that could efficiently extract the power 

from the entire pumped volume in the disks without being multi-mode and high 

Q.  The most efficient resonators had small fundamental-mode sizes and tolerated 

wide variation in thermal lensing.  Attempts to increase the size of the cavity 

mode to enable single mode operation always resulted in lower laser efficiency, 

something which the simple laser modeling used in this research did not predict.  

A likely cause of this problem is thermal lensing aberration, which was eventually 

found to exist under the pumping conditions found in this experiment.  

6.5 Mode-Coupling Experiment 

A second experiment was performed to determine the cause of the surprisingly low 

efficiencies found in certain resonator configurations of the power-handling experiments.  

It was suspected that the high variability in Cr2+ laser efficiency seen over the many disk 

laser experiments was due to mode-matching or diffraction problems, perhaps caused by 
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aberrated thermal lensing, which was suspected to be present in the pumped Cr2+:ZnSe 

laser disks.  

The experiment entailed constructing a simple standing wave Cr2+:ZnSe laser 

resonator and changing the resonator length while measuring resonator output power and 

transverse beam mode shape. The experiment setup (see Figure 6-13) consisted of the 

Cr2+:ZnSe disk laser gain module (1-mm thick Cr2+:ZnSe disk on its heat sink, plus the 

16-pass pumping optics and the 1.89-µm Tm:YLF pump laser), three cavity mirrors, and 

an optical rail. 

The Cr2+ resonator was configured as a standing wave cavity, consisting of the 

Cr2+:ZnSe disk on one end, a 50-cmcc folding mirror positioned 50 cm from the disk, and 

a flat 97%R output coupler placed X cm away from the folding mirror. The 50-cmcc 

folding mirror and the thermal lens present in the Cr2+:ZnSe disk provided stability.  

Cavity mode size was controlled by adjusting the position X of the output mirror. The 

output mirror was mounted on an optical rail, allowing X to be changed without 

disturbing cavity alignment.  To minimize the variables in this experiment, the pump 

laser power was kept at 5 W (Q-switched at 10 kHz) with a 0.4-mm radius pumped spot 

at the same location on the laser crystal throughout the entire experiment. 
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The results of the experiment were surprising. As expected, given the previous dismal 

performance of long cavities, the laser efficiency was poor, about a factor of two less 

than the ~27% predicted by the ideal laser model and verified by 16-pass laser 

experiments using a short, multi-mode cavity.  The laser exhibited two completely 

different stable modes of operation, however, accessed at different ranges of output 

mirror displacement.  Ray-trace stability analysis indicated this should not occur for a 

fixed thermal lens focal length in the disk.  Figure 6-14 shows a scan of output power vs. 

mirror location (for 5 W, Q-switched pumping). The laser operated over a range of output 

mirror positions from X = 40 cm to X = 60 cm.   
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Figure 6-13.  Configuration of Mode-Coupling Experiment 
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A simple ray tracing stability/mode-radius calculation shown in Figure 6-15 predicts 

that the laser should run for approximate output mirror positions of either 40 cm to 50 cm 

or 50 cm to 60 cm, depending on the strength of the thermal lensing, but not for both, 

assuming a constant thermal lens strength. If the single-pass thermal-lens focal length in 

the laser disk is longer than 25 cm, the laser theoretically should be stable for X<50 cm. 

If the thermal lens focal length is shorter than 25 cm, the laser theoretically should be 

stable for X>50 cm. 
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Figure 6-14.  1-mm Cr2+:ZnSe Disk Laser Output Power as a Function of Output 
Mirror Position, 5-W Tm:YLF Pumping, 97%R Output Mirror 

The laser worked from X=40 cm to X=60 cm, with multi-lobed beam shape for X<50 cm 
and single-lobed beam shape for X>50 cm.  Given a fixed focal length thermal lens, 
stability analysis predicts the cavity should lase for either X<50 cm or for X>50 cm,  

depending on the thermal lens focal length, but not for both. 
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The required optics were not available to allow thermal lens focal length to be 

measured while lasing, so thermal lens focal lengths had to be estimated in the generation 

of  Figure 6-15.  The thermal lens was easy to estimate for the right side of the plot 

(X>50 cm).  The fact that the cavity stopped lasing at an output mirror position of 58 cm 

was consistent with a thermal lens focal length of 6 cm.  There was no equally convenient 

way to estimate a thermal lens focal length that would result in stable operation for X<50 

cm.  It was assumed that the thermal lens would be close to the minimum focal length 

allowed, so a 26-cm focal length was chosen.  The large difference between the focal 

lengths required to generate each half of  Figure 6-15 is suspicious, as it does not seem 

realistic.  It is likely that the Cr2+ laser is operating in the presence of something not taken 

into account in simple ray-trace stability analysis, and that the thermal lens assumptions 

used to generate the plot must be viewed with suspicion.  However, as the cavity mirrors 

were not spontaneously changing in curvature or reflectivity, and the pumping conditions 

were not changing, the cause of this phenomenon was thought to be involved with 

thermal lensing somehow, by process of elimination. 
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In addition to the puzzling stability range was the curiously poor efficiency of the 

resonator and its dependence on output mirror position. Figure 6-15 seems to indicate that 

the stable resonator for weak thermal lensing should be considerably more efficient in 

extracting the power from the ~0.5-mm radius gain region than the stable resonator for 

strong thermal lensing due to much better mode overlap.  Figure 6-14 shows that the 

stable resonator for strong thermal lensing in fact extracted more power from the gain 

 

Figure 6-15.  Diameter of Fundamental Cavity Mode vs. Output Mirror Position 
This is a composite plot showing the cavity mode radius and stable cavity operating range 
predicted by Gaussian beam analysis for two different thermal lens focal lengths in the 
laser disk, in an attempt to describe what might be happening in this laser experiment.  A 
thermal lens focal length of longer than 25 cm resulted in stable operation for X<50 cm, 
the left half of the plot.  A thermal lens focal length shorter than 25 cm resulted in stable 
operation for X>50 cm, the right side of the plot. The reasons for choosing 26-cm and 6-
cm focal lengths in this plot are described in the text. 
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region, at least over a limited range of output mirror positions (X~50 cm to 51 cm), 

where the mode overlap is predicted to be quite poor.  Obviously mode-overlap alone 

does not adequately describe this situation, and a factor of three or more variation in 

thermal lensing for two different lasing configurations is not reasonable either.   

A possible explanation for the puzzling behavior of this laser is that thermal lens 

aberration is responsible for the laser cavity being stable for both X<50 cm and X>50 cm 

under otherwise indentical resonator conditions.  The absorbed power density estimate of 

Figure 6-9 shows a transverse dependence approximating a 4th order Super-Gaussian 

function with ~0.4-mm radius.  This produces a non-parabolic transverse refractive index 

gradient in the laser disk, which results in a non-parabolic thermal lens, i.e. aberration.  

For this kind of absorbed power distribution, annular regions of the laser disk farther 

from the center of the pumped spot experience less overall thermal lensing than those 

annular regions closer to the center of the pumped spot.  Perhaps this effect is strong 

enough in the laser disk to allow cavity modes of different diameter to experience 

different average thermal lens focal lengths under otherwise identical resonator 

conditions.  If this is true, then the poor efficiency of the resonator can be explained by 

diffraction loss and poor mode overlap caused by the aberrated thermal lensing.  

To figure out what was happening in this resonator, the transverse beam-intensity 

profile of the laser output was recorded over a range of output mirror positions. The Cr2+ 

laser output intensity profile was captured by an ElectroPhysics PV-320 thermal imaging 

camera connected to a computer-controlled frame grabber.  Beam profile images were 

taken at a series of output mirror positions, (the same positions used for the output power 
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measurements).  No imaging lenses were used; the camera was simply placed in the 

(suitably attenuated) output beam, 105 cm from the 50-cmcc folding mirror.   

The beam images are shown in Figure 6-16.  Single-transverse mode operation 

occurred for X>50 cm and multi-mode operation occurred for X<50 cm.  This is 

surprising, because the mode radius calculation would in fact predict the opposite effect.  

Looking at the beam profile images provided clues to what was going on.  For X<50 cm, 

a large diameter mode oscillated, but with considerable aberration shown in the severely 

multi-mode intensity distribution. This mode should not have oscillated at all, if strong 

thermal lensing were present.  But strong thermal lensing had to be present, as the laser 

also oscillated for X>50 cm. The output for X<50 cm suggests a hole in the center of the 

cavity-mode intensity distribution, as if there were some lossy element or damage in the 

middle of the gain region.  Since the same spot lased for X>50 cm, showing maximum 

intensity distribution at the same location as the hole was for X<50 cm, actual crystal loss 

or damage was ruled out. 

The beam profile images support the thermal lens aberration hypothesis.  If a strongly 

aberrated thermal lens were present in the laser disk, it would act as central diffraction 

loss for the large diameter cavity mode stable for X<50 cm, producing a large diameter 

output beam with a central hole.  The aberrated thermal lens would also act as a soft 

aperture preventing multi-mode operation in the configuration for X>50 cm, resulting in 

an output beam of much smaller diameter than the gain region.  The end result for both 

cases would be reduced laser efficiency, as seen in Figure 6-14.  The beam profile images 

support this idea, as the images corresponding to the highest-efficiency output for X<50 
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cm show large diameter output with multiple lobes and central holes, and the images for 

X>50 cm show small diameter, single-lobed output. 

The low efficiency seen in many of the Cr2+:ZnSe disk laser experiments could be 

explained at least in part by diffraction loss or poor mode overlap caused by aberrated 

thermal lensing in the disks. The thermal lens aberrations simply prevented efficient 

extraction of all the gain in the pumped spot on the disk for any fixed resonator design 

tried in the experiments.  In conditions of severe thermal aberration, a highly multi-mode 

X=40 cm, 460-490 mW X=42 cm, 440-460 mW X=44 cm, 570-575 mW

X=46 cm, 365 mW X=48 cm, 240 mW X=50 cm, 652 mW 

X=56 cm, 282 mW X=54 cm, 396 mW X=52 cm, 530 mW 

 

Figure 6-16.  Cr2+:Disk Laser Beam Profiles for Different Output Mirror Positions 
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resonator with large tolerance for changes in thermal lens focal length and low mode 

selectivity would have the best change of efficient operation.  This kind of resonator has 

been used in these experiments, the cavity with a 10-cmcc output mirror and 8-10 cm 

cavity length, and it did indeed produce the highest efficiency output.  Unfortunately, if 

TEM00 operation is required, there is nothing to do but either accept the efficiency 

penalty or somehow reduce the thermally induced aberration significantly. 

6.6 Summary 

A Cr2+:ZnSe disk laser was constructed and shown to work well under certain 

conditions. The design goal of 5 W was almost achieved, and would have been if the 

pump laser had produced more output power.  The construction was surprisingly easy, 

and everything worked for the most part as designed. Mounting the disks on heat sinks 

and building (and aligning) the pumping systems were a little complicated, but not 

difficult. The disk laser resonators were easy to construct and align, due to the off-axis 

pumping. 

The laser experiments showed that the Cr2+:ZnSe disk laser worked well in multi-

mode resonators with Q-switched pumping, short cavity lengths, and fairly high Q.  The 

results from these cases agreed well with the predictions of the laser dynamics model. 

Slope efficiencies of 40-50% and pulsed average output powers of up to 4.1-4.3 W at 2.5 

µm were achieved in both disks in a hemispherical high-Q standing-wave resonator using 

a 10-cmcc output mirror and Q-switched pumping. Unfortunately, deviations from the 

above conditions (including using CW pumping) resulted in significant reduction in laser 

efficiency that did not correspond to the qualitative predictions of the simple laser 
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stability and mode overlap modeling done in the laser design phase.  A likely explanation 

is that thermal lens aberration was present in the laser disks, preventing efficient 

extraction of all the pump power absorbed in the gain region when CW or TEM00 

operation was attempted.  Reducing the aberration of thermal lensing in the disks should 

significantly improve the efficiency of TEM00 or CW laser operation.  This would require 

obtaining usable 0.25-mm disks; devising a  mounting method that is better than epoxy, 

and is suitable for delicate disks but prevents disk warpage; and making a pumping 

system that produces a radially uniform absorbed power distribution in the laser disks.  

Or, with more pump power available, a larger pump beam diameter could be used with 

0.5-mm and 1-mm disks.  If those conditions could be met, there should be nothing 

preventing the Cr2+ disk laser from achieving the good performance predicted by simple 

modeling. 
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7 Thermal Characterization of Cr2+:ZnSe Disks 
 
 

The Cr2+:ZnSe laser disks were thermally characterized in order to provide feedback 

on how well the disk laser scheme had handled the undoubtedly significant, but largely 

unknown thermal effects.  Both modeling and experiments were employed.  The 

modeling consisted of running a finite-element analysis routine (ABAQUS) using a 

simple disk model to determine temperature distributions and corresponding thermal lens 

powers as a function of disk thickness and pump beam distribution.  The experiment 

entailed using a phase-shifting interferometer to measure the optical path length 

differences occurring in pumped Cr2+:ZnSe disks due to non-uniform temperature 

profiles (thermal lensing).  This chapter presents results of both modeling and 

experiments, and finally a comparison between the two. 

7.1 Thermal Modeling 

Modeling the heat transfer within the pumped Cr2+:ZnSe disks was performed both to 

aid the interpretation of experimental findings and to see if the thermal behavior of the 

Cr2+:ZnSe disks corresponded closely enough to the models to make predictive modeling 

a useful design tool. This section discusses the thermal models, choice of pumping 

conditions, the modeling results, and an interpretation of the results. 

7.1.1 Thermal Models 

It was clear from the start that the three dimensional nature of the heat flow in the 

Cr2+:ZnSe disks did not lend itself to a nice closed form solution. Therefore, a 

commercial finite-element-analysis software package called ABAQUS was employed to 

make the problem manageable.  The thermal models used with ABAQUS were very 
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simple. Steady state heat transfer was assumed, with no thermal transport by radiation.  

No structural dynamics were modeled.  The model of a laser disk consisted of a slab of 

ZnSe with one face having a constant temperature of 20 C (the heat sink), and the other 

faces being insulated. Optical pumping was simulated by an applied volumetric heat 

source which was uniform along the axis (thickness) of the disk, but varied transversely 

to match the transverse intensity distribution of the pump laser beam.  In effect, this built 

an assumption into the modeling that the amount of pump light converted to heat was 

constant as a function of disk temperature. Of course, this is not true, but accounting for 

varying thermal loading with temperature in ABAQUS proved too difficult to attempt in 

the time available for this simulation effort.  Since the model was linear, only one value 

of heat source power was needed; the results of applying a different heat source power 

(with the same spatial distribution)  would be linearly dependent. 

The model assumed that the thermal interface between the disk and the heat sink was 

of low thermal resistance, thermal stress was not significant enough to need to be 

modeled, and that heat loss through the disk surfaces exposed to air was negligible.  

Although in reality these assumptions might not be completely valid, the values of the 

parameters needed to accurately model the ‘real world’ cases of imperfect thermal 

interfaces, thermal stress, and weak air convection in the laser disks were not known. It 

was much simpler and cleaner to just model the ideal case and compare it to the 

experimental results. 

Although the underlying model geometry, boundary conditions, and heat source 

inputs were continuous functions, they had to be sampled at an array of points called 
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nodes before the numerical solution of the heat equation could be calculated.  Ideally, the 

sampling density would be so high that the numerical solution would be free from error 

caused by using finite elements instead of true differential elements of infinitesimal 

dimensions.  Unfortunately, finite computer resources and time constraints forced the 

sampling density to be fairly coarse.  After many trials, a node spacing of 0.05 mm was 

selected. This node spacing was reasonably effective in adequately representing the 

transverse intensity variation of the 0.4-mm radius absorbed pump power distribution in 

the disks.  With this 0.05-mm node spacing, it was found that the maximum practical 

crystal size that could be modeled was 3x3x1 mm3 (which resulted in over 78,000 nodes).  

Thus, the models were of 3x3-mm2 disks with different thickness (1.0 mm, 0.5 mm, 0.25 

mm), all using the same node spacing of 0.05 mm. 

7.1.2 Pumping Conditions 

Three different thermal absorbed power density functions were modeled, each using 

two different beam radii, to determine how thermal lensing was affected by the diameter 

and intensity distribution of the pump laser beam. (Note that absorbed power density 

refers to power absorbed per unit volume).  The three different density functions used are 

shown in equations (7-1), (7-2), and (7-3):  

2

2
0

2
0 ])()[(2

2

2
),,( W

yyxx

G e
TW

zyxf
−+−

−
=

π
 (7-1)

( )
4

22
0

2
0 )()(2

24

2
799.0),,( W

yyxx

SG e
TW

zyxf
−+−

−
≅

π
 (7-2)

( )
50

252
0

2
0 )()(2

250

2
525.0),,( W

yyxx

SG e
TW

zyxf
−+−

−
≅

π
 (7-3)

 



 

 7-4

where W is the beam radius, T is the disk thickness, x and y are transverse coordinates, 

and (x0,y0) marks the position of the pumped spot center.  All of the absorbed power 

density functions varied in the transverse plane, but not along the longitudinal axis – a 

simple way to approximate the multiple passing of the pump laser through the laser disks. 

The transverse (x,y) dependence was modeled using Super-Gaussian functions, and the 

longitudinal (z) dependence of the absorbed power was assumed constant.  The density 

functions were normalized such that a volume integral of the absorbed power density 

function over the entire disk would result in 1-W total absorbed power. (Note that (7-2) 

and (7-3) were normalized numerically).  Applying a different power level was done by 

multiplying the density function by the desired power value. 

The density function of (7-1) has a transverse Gaussian dependence, which represents 

the heating caused by a TEM00 pump beam.  The density function of (7-2) has a 

transverse fourth order Super-Gaussian dependence, which represents the heating caused 

by a typical multi-mode pump beam or the 16-pass pumping system. The density function 

of (7-3) has a transverse 50th order Super-Gaussian dependence, which represents an 

idealized ‘top-hat’ pump beam (which was what the disk laser design originally called 

for).  The two beam radii used with these functions were 0.4 mm and 0.8 mm.  Figure 7-1 

shows cross sections of the three different absorbed power distribution functions, plotted 

through the peak for a 5-W heat load with 0.4-mm beam radius in a 1-mm thick disk. 
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7.1.3 Modeling Results 

The modeling results are cross sections of temperature distributions in the disks and 

estimated thermal lens focal lengths for the cases modeled.  The output of ABAQUS was 

a three-dimensional array of temperature for each case. The 3-D temperature arrays were 

averaged along the longitudinal axis to provide the z-averaged temperature profiles 

needed for estimating thermal lens focal lengths. Thermal lens focal lengths were 

estimated from the z-averaged temperature data using a least squares curve-fitting routine 

discussed in detail in 7.2.3. 

 

Figure 7-1.  Cross Section of Modeled Absorbed Power Density in Laser Disk 
This plot shows a transverse cross section of the three different absorbed power density 
functions used in this modeling effort to investigate the effects of variation in transverse 
intensity distribution of the input pump laser beam on thermal lensing. The plot is for 5-
W input power into the 1-mm disk. 
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Before discussing thermal lens focal lengths, it is useful to investigate the temperature 

distributions the model predicted would occur in the laser disks.  Figure 7-2 shows 

longitudinal variation in temperature at the center of the pumped spot for the three disk 

thickness values modeled.  The plot shows the temperature rise above heat sink 

temperature per watt of absorbed pump power (using 0.4-mm radius Gaussian pumping).  

Notice that the peak temperatures reached in each disk were fairly comparable. Thus 

changing disk thickness alone did not significantly affect peak temperatures reached in 

 

Figure 7-2.  Axial Temperature Distribution in Cr2+:ZnSe Disks 
This plot shows how temperature starts off at the heat sink temperature (0 K temperature 
difference) at the heat sink (at z = -0.05 due to an ABAQUS idiosyncrasy), and rises as 
the input face is approached.  This plot is for 1 W of heat input, using the Gaussian power 
density and 0.4-mm beam radius.  

18 

16 

14 

ei2 

IÜ 
3= 
a 

-J ft 
fU 

n 
f- 
<L> 6 

♦ ♦ * 
+ 

•   + 

• 1.0-mm Disk 
+   0.5-mm Disk 
* 0.25-mm Disk 

0.1 0.2 0.3 0.4 0.5 0.6 
Z Position (mm) 

0.7 0.8 0.9 



 

 7-7

the disks. This effect held for all the pumping distributions, and therefore the full array of 

those results is not shown. 

In order to calculate thermal lens focal lengths, and indeed to aid in interpreting the 3-

D temperature information, the temperature arrays were averaged in the z direction to 

produce 2-D arrays of (z-averaged) temperatures.  Figure 7-3 shows a plot of z-averaged 

temperature as a function of transverse position on the disk, for 5-W heat load with 

Gaussian distribution, 0.4-mm radius, and 1-mm disk thickness.  It does appear that the 5-

W heat load makes the center of the pumped spot get quite hot. 

 

Figure 7-3.  Z-Averaged Temperature in 1-mm Disk, 5-W TEM00 Pumping 
This plot shows the longitudinally averaged temperature distribution in the 1-mm 
Cr2+:ZnSe disk, predicted by ABAQUS for 5-W pumping with a 0.4-mm radius Gaussian 
beam.  Z-averaged temperatures as high as 70°C are predicted in the center, for a 20°C 
heat sink temperature. 
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Table 7-1 shows the variation of longitudinally (z)–averaged temperature at the center 

of the pumped region, per watt of pump power for the different pumping cases and disk 

sizes.  On the average, the peak (z-averaged) temperature inside the Cr2+:ZnSe disks 

increased at 10 K per watt of pump power for the 0.4-mm radius pump distributions and 

5 K per watt for the 0.8-mm radius pumping.  The disk thickness affected temperature 

profiles more significantly when it was thin in comparison to the pump beam diameter. 

In the transverse (x,y) plane, the (z-averaged) temperature profiles changed slightly 

with changes in both disk thickness and absorbed pump power distribution.  In general, 

the thinner the disk was relative to the radius of the absorbed power distribution, the more 

closely the temperature profile in the disk followed the shape of the absorbed power 

distribution. As an example, Figure 7-4 shows the transverse distribution of z-averaged 

temperature for the 1-mm disk using the three different pump power distribution 

functions with 5-W input power and 0.4-mm radius.  Notice the temperature profiles are 

almost identical.  In contrast, Figure 7-5 shows that the variations in temperature 

distribution in the 0.25-mm disk pumped with the three different 0.8-mm radius beams 

were readily apparent.  

 

Table 7-1.  Predicted Longitudinally-Averaged Temperature Rise at the Center of 
the Pumped Spot in Cr2+:ZnSe Disks Per Watt of Absorbed Heat 

Absorbed Power 
Distribution 

Beam 
Radius 

Max Temp, (z-avg.) 
1-mm Disk  (K/W) 

Max Temp, (z-avg.) 
0.5-mm Disk (K/W) 

Max Temp, (z-avg.) 
0.25-mm Disk (K/W) 

Gaussian 0.4mm 10.5 11.9 11.6 
 0.8mm 6.1 5.5 4.3 
Super Gaussian (n=4) 0.4mm 10.6 12.0 11.4 
 0.8mm 6.1 5.5 4.0 
Super Gaussian (n=50) 0.4mm 9.6 10.3 9.1 
 0.8mm 5.3 4.3 2.8 
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Figure 7-4.  Cross-Section of Predicted Temperature Distributions in 1-mm Disk 
This plot shows a cross section of predicted z-averaged temperature in the 1-mm 
Cr2+:ZnSe disk, for Gaussian, 4th order Super Gaussian, and top-hat pumping at 5 W and 
0.4-mm radius 

 

Figure 7-5.  Cross-Section of Predicted Temperature Distributions in 0.25-mm Disk 
This plot shows a cross section of predicted z-averaged temperature in the 0.5-mm 
Cr2+:ZnSe disk, for Gaussian, 4th order Super Gaussian, and top-hat pumping at 5 W and 
0.8-mm radius. Note the large variation in temperature distribution, compared to that of 
the 1-mm disk in Figure 7-4. 
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Thermal lens focal lengths were calculated by curve fitting a parabolic function to 

transverse phase difference matrices computed from z-averaged temperature data using 

the following expression: 

dT

dnTL
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λ
π
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πφ ∆==∆ 22

 (7-4)

 

where ∆ϕ is phase difference, OPLD is optical path length difference, λ is light 

wavelength, L is the length of the optical path (2 times the disk thickness), ∆T is the z-

averaged temperature difference, and dn/dT is the change in refractive index with 

temperature (70x10-6 for ZnSe).  Further explanation of the process can be found in 

Section 7.2.3.   

     Since the disks are mirror coated on one side, the thermal lensing can be defined 

naturally in two ways, possibly leading to confusion: single pass or double pass.  In this 

chapter the thermal lens focal length and lens power are calculated using the double-pass 

convention. This means that the total lens focal length is calculated for light traveling 

through the disk twice (since that is what happens in use). To convert these results to the 

single-pass convention, simply multiply the double-pass focal length values by two (or 

divide thermal lens power values by two). 

The thermal lensing produced by the (z-averaged) temperature distributions in the 

disks is summarized in Table 7-2. Two different data window sizes, 0.5 mm and 1.0 mm, 

were used for the curve-fitting routine that estimated focal length from the arrays of z-

averaged temperature.  It was found that the best overall fits were obtained by using a 

data window of about half to three-quarters of the diameter of the absorbed power 
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distribution, but the 0.5-mm data window provided the most accurate fits at the center of 

the pumped spot.  The information in the table is presented in terms of thermal lens 

power (in diopters) per watt of input pump power (heat load) for ease of interpretation, as 

it is then linearly dependent on pump power.  The results for the 0.5-mm data window 

also plotted in Figure 7-6 and Figure 7-7.  

Table 7-2.  Modeled Thermal Lensing in Pumped, Nonlasing Cr2+:ZnSe Disks 
 

Abs. Power 
Distribution 

Beam 
Radius 

Lens Power (m-1/W) 
1-mm Disk 

Lens Power (m-1/W) 
0.5-mm Disk 

Lens Power (m-1/W) 
0.25-mm Disk 

  0.5 mm Fit 1 mm Fit 0.5 mm Fit 1 mm Fit 0.5 mm Fit 1 mm Fit 
Gaussian 0.4 mm 8.6 4.3 6.6 3.0 4.1 1.6 

 0.8 mm 2.1 1.6 1.4 1.0 0.65 0.46 
N=4 S.G. 0.4 mm 8.5 4.6 6.4 3.2 3.8 1.7 

 0.8 mm 1.7 1.6 0.94 0.93 0.33 0.38 
N=50 S.G. 0.4 mm 5.7 4.2 4.0 2.9 2.0 1.5 

 0.8 mm 0.88 0.93 0.38 0.45 0.065 0.12 

 

Figure 7-6.  Modeled Thermal Lensing in ZnSe Disks, 0.4-mm Radius Pumping 
This plot shows model predicted thermal lens power (1/f) for three disk thickness values 
and three different absorbed power density functions (Gaussian, 4th order Super-
Gaussian, and top-hat), all with 0.4-mm radius.  The plot is for 1-W heat load, so can be 
interpreted as thermal lens power per watt of heat load. 
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Figure 7-7. Modeled Thermal Lensing in ZnSe Disks, 0.8-mm Radius Pumping  
This plot shows model predicted thermal lens power (1/f) for three disk thickness values 
and three different absorbed power density functions (Gaussian, 4th order Super-
Gaussian, and top-hat), all with 0.8-mm radius.  The plot is for 1-W heat load, so can be 
interpreted as thermal lens power per watt of heat load. 
 

None of the data discussed so far shows how good the curve fits are and how 

aberrated the predicted thermal lensing is.  Cross section plots of the phase difference 

function and the associated thermal lens curve fits are shown for selected cases to show 

that the thermal modeling does in fact predict thermal lens aberration.  The plots of 

Figure 7-8-Figure 7-11 show the extreme limiting cases of the thermal lensing found in 

this modeling effort.  A 5-W heat load is used for all four figures.   

Figure 7-8 shows strong thermal lensing associated with 0.4-mm radius Gaussian 

pumping of the 1-mm disk, resulting in a 2.3-cm thermal lens focal length (double pass).  

Figure 7-9 shows the same disk pumped with a 0.4-mm radius top hat, resulting in a 3.5-

cm focal length thermal lens.  Note that the curve fit is better for the top-hat pumping, 

indicating less aberration than for Gaussian pumping.  Figure 7-10 shows weak thermal 

.E 

*   Gaussian beam 
x   Super Gaussian (n=4) 
+   Top Hat (n=50) 

+ 
0.25 0.5 0.75 

Disk Thickness (mm) 



 

 7-13

lensing associated with 0.8-mm radius Gaussian pumping of the 0.25-mm disk, resulting 

in a 44-cm focal length thermal lens, almost a factor of 20 longer focal length than for the 

1-mm disk pumped with the 0.4-mm Gaussian.  Some of this reduction is due to reduced 

disk thickness, and some of it is because the beam is wider.  However, notice that the 

lensing is still aberrated, albeit weak. .  Figure 7-11 shows that pumping the same 0.25-

mm disk with a 0.8-mm top-hat results in virtual elimination of thermal lensing inside the 

pumped diameter of the disk, with thermal lens focal length of 166 cm.   

Notice how the phase (temperature) distribution in the 0.25-mm disk more closely 

follows the pump intensity profile.  It takes a beam diameter to disk thickness ratio 

greater than approximately 6:1 to achieve this.  If uniform (top-hat) pumping is used with 

beam diameter at least 6 times the disk thickness, thermal lensing is nearly eliminated. 

 

 

Figure 7-8. Thermal Lensing in 1-mm Disk, 5-W Gaussian Density, 0.4-mm Radius 
This figure shows the predicted thermal lens focal length, 2.3 cm, in the 1-mm Cr2+:ZnSe 
disk for the case of 5-W absorbed heat in a 0.4-mm radius Gaussian density. 
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Figure 7-9. Thermal Lensing in 1-mm Disk, 5-W Top-Hat Density, 0.4-mm Radius 
This figure shows the predicted thermal lens focal length, 3.5 cm, in the 1-mm Cr2+:ZnSe 
disk for the case of 5-W absorbed heat in a 0.4-mm radius top-hat density. 

 

Figure 7-10. Thermal Lensing in 0.25-mm Disk, Gaussian Density, 0.8-mm Radius 
This figure shows the predicted thermal lens focal length, 44 cm, in the 0.25-mm 
Cr2+:ZnSe disk for the case of 5-W absorbed heat in a 0.8-mm radius Gaussian density 
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Figure 7-11. Thermal Lensing in 0.25-mm Disk, Top-Hat Density, 0.8-mm Radius 
This figure shows the predicted thermal lens focal length, 166 cm, in the 0.25-mm 
Cr2+:ZnSe disk for the case of 5-W absorbed heat in a 0.8-mm radius Gaussian density 
 

Given that the laser experiments of Chapter 0 used primarily the 1-mm disk and 0.4-

mm radius pumping, it can be safely said that the thermal modeling indicates that 

significant aberration should have been present in the laser disk.  Whether this aberration 

is enough to cause the efficiency problems is an open question.  Perhaps a more 

sophisticated thermal model incorporating temperature dependent thermal loading might 

provide further insight into this issue, but is was beyond the scope of this research, due to 

time constraints.   

7.1.4 Interpretation of Modeling Results 

The modeling results indicate several trends: 
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1. The peak and average temperatures reached in a face-cooled laser disk do 

not depend strongly on disk thickness.  Unfortunately, if all the pump power is 

absorbed in the disk, the thermal gradient essentially doubles as the disk thickness 

is halved, doubling the stress on the crystal, but maintaining the same peak and 

average temperatures.  Thus, reducing the disk thickness does not improve 

cooling efficiency and indeed increases likelihood of thermal fracture.  

2. It takes only a few watts of heat load to elevate the Cr2+:ZnSe temperatures 

to the point where non-radiative relaxation is significant.  For the 0.4-mm 

beam size, a total heat load of 5 W resulted in the modeled peak (z-averaged) 

temperature in the disks being 50 K hotter than the heat sink – a condition which 

would result in ~40% reduction in laser gain at a heat sink temperature of 293 K.  

Of course, the exact heat load imparted to a Cr2+:ZnSe disk per watt of absorbed 

pump power is not well known, and could vary from as little as 15% to as much 

as 90% or more, depending on disk temperature, the particular sample, and 

whether the disk is lasing or not. 

3. For a fixed pump power and beam radius, thermal lens power diminishes as 

the disk thickness is reduced.  In the limiting case of very wide pump beams and 

thin disks, one would expect thermal lens power to halve if disk thickness is 

halved, due simply to the reduction in optical path length and trend 1.  Radial heat 

transfer has to be negligible for this limiting case to hold.  It appears to take a disk 

at least six times thinner than the pumped diameter to approach this condition, 

judging from the results in Table 7-2.  Nevertheless, at every disk thickness and 
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beam diameter modeled, the predicted thermal lens power significantly 

diminished as the disk thickness was reduced.  

4. The thermal lens power is reduced as the absorbed pump distribution is 

flattened.  The 50th order super-Gaussian beam did result in significantly reduced 

thermal lensing compared to that with Gaussian pumping, especially in the thinner 

disks.  Sadly, the 4th order super-Gaussian distribution, which is typical of 

common multi-mode pump lasers, is not nearly flat enough to produce the 

reduced thermal lensing; it produced much the same thermal lensing as a perfect 

TEM00 Gaussian beam. 

5. Thermal lens power is virtually eliminated under the conditions of uniform 

absorbed pump power with a diameter that is greater than 6 times the disk 

thickness.  A 1-mm disk pumped with a 0.4-mm radius Gaussian pump beam has 

approximately 70 times the thermal lens power of a 0.25-mm disk pumped with a 

uniform top-hat beam with the same power but double the radius. Thus, although 

it takes more pump power to reach laser threshold if the beam diameter is 

expanded, and the laser becomes more sensitive to thermal lensing as the beam 

diameter is increased, the reduction in thermal lensing can be more than enough to 

offset these problems. The disk simply needs to be thin, compared to the diameter 

of the pump beam, and the pump beam needs to have a fairly uniform transverse 

intensity distribution. Actually, one would obtain nearly the same effect by using 

a pump beam with flat transverse intensity distribution that was the same diameter 
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as the disk.   That method would not need the disks to be thin and could be an 

important discovery for future research. 

7.2 Experimental Characterization of Thermal Effects 

The thermal characterization experiment used phase-shifting interferometry to 

measure thermal lensing and temperature in two non-lasing Cr2+:ZnSe disks pumped by 

the Tm:YLF laser and multi-pass pumping system.. 

7.2.1 Phase shifting interferometry 

The term “phase shifting interferometry” refers to the technique of measuring the 

phase difference between two light beams.  An interferometer with phase shifting 

capability records interference pattern images, and a computer analyzes the images to 

calculate phase difference.  A typical configuration of the interferometer is shown in 

Figure 7-12. 

 

Camera 

Interferogram 

Light  
Source 

Piezo-electric 
Stepper 

Reference
Mirror 

Phase Shifter 

Test Surface 
(Reflective) 

Beamsplitter 
Lens 

Test  
Beam 

Ref. Beam 

 

Figure 7-12.  Schematic of Phase Shifting Interferometer 
This is a typical Twyman-Green interferometer that has the reference mirror mounted on 
a piezo-electric device that can move the mirror longitudinally in controllable amounts, 
shifting the interference fringe pattern by changing the phase of the reference beam. 
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     A light source is split by a beamsplitter into  reference and test beams.   The test 

beam illuminates the test surface, and is partially reflected back through the beamsplitter 

and onto a camera hooked up to a computer for image acquisition.  The reference beam 

illuminates the reference mirror, is partially reflected back to the beamsplitter and then 

onto the camera. The camera (and computer-controlled frame grabber) records images 

which represent time-averaged interference between the reference and test beams at the 

“object” plane defined by the placement of the camera and imaging lens.  Typically, the 

object(s) in focus will be the test surface and the reference mirror. 

If the optical path length difference between the two arms of the interferometer is 

smaller than the coherence length of the light source, and the reference and test beam 

intensities at the camera are similar, then interference fringes with high contrast will be 

present in the camera images.  The intensity pattern on the camera will have the 

functional form of  

],(cos[),(),(2),(),( 2121 yxyxIyxIyxIyxI φ∆−+  (7-5)

 

where I1 and I2 are test and reference beam intensities incident on the camera, and ∆φ is 

the phase difference between the two beams.  

Each interference fringe represents a 180° phase change between the reference and 

test beams, corresponding to a half-wavelength of optical path length difference.  This 

difference could be caused by differences in surface topography between the reference 

and test surfaces, or by changes in the refractive index (or thickness) of the media 

through which the beams travel.  The interferometer can therefore be used in reflection 
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mode to measure surface topography, or in transmission mode to measure changes in 

index of refraction such as thermal-optical effects.  

Unfortunately, the basic interferometer allows only the magnitude of the optical path 

length difference to be measured, due to the cosine dependence of the interference 

pattern.  The sign of the optical path length difference as well as its magnitude, can be 

determined using the phase shifting technique.  With the reference mirror attached to a 

piezo-electric transducer (PZT),  the optical path length of the reference arm can be 

changed precisely by a few optical wavelengths without affecting the test arm.  As the 

reference mirror is moved, ∆φ changes, shifting the fringes in the interference pattern 

seen by the camera.  The direction of the shift of the fringe pattern gives the sign of the 

phase difference.   For computerized data analysis, a quantitative method of performing 

this technique is needed.  One approach is to record four interference pattern images with 

the PZT-induced phase shift increasing by π/2 for each successive image, and to post-

process the images to obtain an estimate of ∆φ .  The images are described by the 

following equations: 
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These expressions differ only in the applied PZT phase shift.  A little arithmetic 

results in an equation that can be solved for ∆φ’, the so-call ‘wrapped phase’ function:  
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The wrapped phase estimate ∆φ’ is a piecewise-continuous approximation of the true 

phase difference ∆φ, but with all possible phase mapped onto the [0,2π] range, the range 

of the inverse tangent function (hence the term ‘wrapped phase’).  Phase discontinuities 

arise in ∆φ’ when the real phase difference ∆φ(x,y) varies by more than 2π as a function 

of position.  These phase discontinuities in ∆φ’ must be removed in order to accurately 

reproduce ∆φ, a process called phase unwrapping.  

Phase unwrapping can be difficult in general, but is a very simple process if the 

wrapped phase data meet certain conditions.   The first condition is adequate sampling of 

what is in reality a continuous distribution.  To accurately sample this distribution, the 

phase change between successive pixels on the camera must be less than π. The second 

condition is self-consistency; a path integral around any closed loop in the wrapped, 

sampled phase estimate ∆φ’(xi,yj) must be zero.  If the wrapped, sampled phase estimate 

meets these two conditions, then the phase discontinuities can be removed without 

introducing error.  The reason is simple: given the above conditions, any phase change of 

π or more between successive pixels in the wrapped, sampled phase estimate matrix must 

be due to the ‘wrapping’  effect of the arctan function.  Adding or subtracting the correct 

integral multiple of 2π phase to one of the pixels will minimize the phase difference 

between the two pixels – removing the ‘wrapped phase’ discontinuity.  The 
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discontinuities in the entire wrapped sampled phase estimate matrix can be corrected in 

this way, stepping from one pixel to the next in a contiguous path. Once this process is 

complete, an estimate of the sampled true phase ∆φ(xi,yj) is produced. 

This phase unwrapping procedure is straightforward but  gives good results only if 

the conditions of adequate sampling and self-consistency are met.  In a lab table 

interferometer, this is usually achievable.  The only problems end up being stray 

reflections, damaged camera pixels, damage spots on the optics, inadequate sampling 

around the edges of the image, and inadequate illuminating intensity.  Simply using anti-

reflection coated optics, avoiding bad spots on optics and mirrors, using an adequate 

illuminating light source, and using the appropriate magnification on the imaging system 

to ensure adequate phase sampling will minimize phase unwrapping errors.   

Most of the remaining errors will be small and can be localized to small areas on the 

phase estimate matrix or removed by windowing or by comparing the phase estimates 

obtained using different phase unwrapping paths.  If errors are still too great, then it is 

possible to take two sequences of interference patterns, with a 90 degree phase shift 

between sequences, and average the phase estimates produced from each sequence before 

performing phase unwrapping.  (In its simplest form, only one more interference pattern 

image needs to be taken to do this, for a total of five 90 degree shifted images.) More 

sophisticated techniques to mitigate phase error exist, but these simple ones were found 

to be sufficient for this research. 
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7.2.2 Experiment Setup 

The experimental setup, shown in Figure 7-13, consisted of a Cr2+:ZnSe disk laser 

gain head, a Tm:YLF pump laser, a Tm,Ho:YLF probe laser,  a Twyman-Green 

interferometer, and a computer for capturing and analyzing the data.  The Cr2+:ZnSe gain 

head itself consisted of a Cr2+:ZnSe laser disk on a water-cooled heat sink, and the 

associated relay imaging optics used to obtain 16 passes of the pump light.  Two disks 

were used in this experiment, the 0.5-mm and 1.0-mm thick disks used in the laser 

experiments in Chapter 0.  The Tm:YLF pump laser produced up to 15 W at 1.89 µm, 

with M2 = 5, for either CW or 10 kHz Q-switched operation.  The multi-pass pumping 

produced a pumped spot with absorbed power distribution fairly well approximated by a 

fourth order “super-Gaussian” with 0.4-mm radius. The Tm,Ho:YLF probe laser was of 
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Figure 7-13.  Schematic of Cr2+:ZnSe Thermal Characterization Experiment 
This setup consists of the 16-pass Cr2+:ZnSe disk laser pump and gain module, and the 
phase shifting interferometer using a low power Tm,Ho:YLF probe laser as its light 
source.  The output coupler of the Cr2+ laser had to be removed to perform this 
experiment, resulting in the thermal lens measurements being for non-lasing conditions. 
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similar design as the Tm:YLF pump laser, but operated with low diode laser input power, 

resulting in a fairly stable 200-mW output beam at 2.06 µm.  This laser was used because 

the probe needed to be at a wavelength for which the crystals were already coated, 

excluding more convenient 1-µm or 633-nm lasers.  Tm,Ho:YLF was used instead of 

Tm:YLF in the probe laser to shift its wavelength away from the Cr2+:ZnSe absorption 

peak of 1.75 µm. The probe laser beam was sent through a 1:1 telescope and spatial filter 

to clean up the transverse intensity profile, then into a Twyman-Green interferometer, 

configured as shown in Figure 7-13.  An imaging lens captured the interference pattern 

and projected it with 4x magnification onto a PV-320 thermal camera.  A computer 

recorded the camera images for later analysis.  

7.2.3 Experimental Procedure 

The following data acquisition and analysis procedure was conducted for a variety of 

pumping conditions to characterize the Cr2+:ZnSe laser disks..  First, the interferometer 

and pumping optics were aligned, the pump laser power was set, and the five phase-

shifted interference patterns needed for the PSI data analysis were recorded using the 

camera and computer. (Five images were needed instead of four because the simple error 

reduction technique was used.)  Next the interference pattern images were loaded into 

Matlab as two-dimensional arrays of intensity, and a phase map was calculated using the 

phase-shifted interferometry technique.  Average temperature profiles were calculated for 

cross sections of the phase map, and then the phase map was fitted with a parabolic 

surface via least squares to obtain the approximate thermal lens power. 
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Temperature inside the laser disk was estimated by solving the expression below for 

∆Τ, the longitudinally averaged temperature change, at each element in the phase map 

matrix.  Here, ∆φ  is the phase difference, λ is the wavelength of the interferometer light 

source, L is the distance light travels through the laser disk (2 times the disk thickness), 

and dn/dT is the change in the refractive index of the disk with temperature (70x10-6 K-1
 

for ZnSe). 

dT

dnTL

λ
πφ ∆=∆ 2

 (7-8)

 

This expression assumes the Cr2+:ZnSe disk acts as a thin lens on the interferometer 

probe beam.  The assumption is valid, as the shortest focal lengths measured were greater 

than 2 cm, and the thickest disk was only 1-mm thick.  Solving this equation for all 

elements in the phase map matrix yields a map of longitudinally-averaged temperature at 

a grid of points (xi,yj) on the pumped crystal. 

Unfortunately, the ‘raw’ temperature map values were susceptible to error from 

interferometer tilt, making the disk seem hotter than it really was (especially at low pump 

power levels).  This error in estimated temperature difference could account for as much 

as 50% of the total estimated temperature difference at low pump power, making accurate 

(z-averaged) temperature estimation impossible at low pump power levels. To remove the 

effects of interferometer tilt, the temperature around the edges of the phase map was 

averaged to provide a ‘tilt-resistant’ baseline temperature.  Peak temperature difference 

was obtained by subtracting the average baseline temperature from the peak temperature.  
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Fitting of a parabolic surface representing the effect of a thin lens with a given lens 

power to the data and estimating the thermal lens power were performed using the 

following technique.  The parabolic surface was represented in Cartesian coordinates as: 

2
5

2
43210 yAxAxyAyAxAAP +++++=  (7-9)

 

An appropriately sized data window was applied to the matrix of phase data before 

the least squares fit operation was performed, to limit the least squares fitting region to 

the region of interest, namely the pumped area on the laser disk or some fraction thereof.  

The least squares fitting of the surface used the standard method of approximately 

solving the equation P=HA for the unknown vector A, given that P is a known vector and 

H is a known matrix (which is not square). First, the phase data matrix was converted into 

a long column vector P. The matrix H was then created, with each row consisting of the 

polynomial terms (1,x,y,xy,x2,y2) evaluated at the coordinates (x,y) corresponding to that 

row in P. Finally the coefficients of A were solved for in a least squares sense using the 

‘pseudo-inverse’ method: 

PHHHA TT 1)( −=  (7-10)
 

The focal length of any lensing present in the phase data was deduced from the 

coefficients of the second order terms in the fitted surface polynomial using the 

expressions shown below: 
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To ensure that any astigmatism would be fully observable, a transformation of 

coordinate basis was performed to eliminate the cross term (xy) in the curve-fit 

polynomial, and thereby line up the principal axes of the polynomial surface curvature 

with the Cartesian coordinate axes. Finally, the component focal lengths were averaged 

together to produce an overall focal length.  For data presentation, the average focal 

length was inverted to produce an average lens power in diopters (1/m). 

7.2.4 Experimental Cases 

The thermal characterization experiment was performed several times for each 

mounted Cr2+:ZnSe disk under the following pumping conditions (all non-lasing, due to 

lack of appropriate optics).  

1. 1-mm Cr2+:ZnSe disk, CW multimode Tm:YLF, 0-5W input power 

2. 0.5-mm Cr2+:ZnSe disk, CW multimode Tm:YLF, 0-5W input power 

3. 1-mm Cr2+:ZnSe disk, Q-switched multimode Tm:YLF with 10 kHz rep. rate, 1 µs 

FWHM pulse-width, 0-5W input power 

4. 0.5-mm Cr2+:ZnSe disk, Q-switched multimode Tm:YLF with 10 kHz rep. rate, 1 µs 

FWHM pulse-width, 0-5W input power 

5. 1-mm Cr2+:ZnSe disk, Q-switched fiber-launched Tm:YLF with 10 kHz rep. rate,      

1 µs FWHM pulse-width 0-5W input power 

The Cr2+:ZnSe disks were the same ones used in the laser All pumping cases covered 

the range of 0-5 W input power in steps of 1 W and used the multi-pass pumping optical 

system: In cases 1-4, the input pump beam had a radius of 0.4-mm at the disk and an M2 

of 5.   In case 5, the Q-switched Tm:YLF pump beam was run through a multimode 
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optical fiber with 0.22 NA and 200-µm diameter before being imaged onto the Cr2+:ZnSe 

disk.  The high divergence fiber-launched pump beam had a radius of 0.5-mm at the disk 

and an M2 of ~20. Due to the multiple-pass pumping, the absorbed power distribution in 

the laser disks differed from the intensity distribution of the input pump beam.  Imaging 

the Cr2+ fluorescence from the pumped disks allowed the absorbed power distribution in 

the disks to be estimated. Table 7-3 shows the approximate absorbed power profile in the 

Cr2+ laser disk for each of the pumping cases. 

 
7.2.5 Results 

The experimental procedure was repeated for all five experiment cases at an array of 

pump power levels going from 0 to 5 W in 1-W steps.. This section presents the step-by-

step results from one part of one case, that of the 1.0-mm Cr2+:ZnSe disk pumped with 5-

W CW pump power, then summarizes the measured thermal lens power and maximum 

temperature rise in the disks as a function of pump power for all five cases. 

The outcomes of the intermediate steps are shown in  Figure 7-14 through Figure 

7-18.  Figure 7-14 shows an interference pattern image and a contour plot of the 

‘wrapped phase’ estimate obtained from the phase-shift interferometry. Figure 7-15 

shows a 3-D representation of the phase estimate after the phase unwrapping procedure. 

Table 7-3.  Pumping Conditions for the Thermal Characterization Experiment 
 

Case
: 

Disk 
Thickness: 

Pumping: Tranverse Absorbed Power Distribution  

1 1.0 mm 5 W CW  N=4 Super Gaussian, 0.41-mm Radius 
2 0.5 mm 5 W CW  N=4 Super Gaussian, 0.45-mm Radius 
3 1.0 mm 5 W Q-Sw.  N=4 Super Gaussian, 0.45-mm Radius 
4 0.5 mm 5 W Q-Sw.  N=5 Super Gaussian, 0.6-mm Radius 
5 1.0 mm 5 W Q-Sw. Fiber N=4 Super Gaussian, 0.5-mm Radius 
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Note that there are approximately four waves of total phase curvature present in the 3x3-

mm phase map.  Next, Figure 7-16 shows a horizontal cross-section plot of the phase 

map (through the center of the pumped region) showing the heat-induced phase curvature 

and a parabolic curve-fit for the thermal lensing that corresponds to the phase curvature.  

The curve-fit was performed using a 0.5-mm data window to guarantee the accurate 

calculation of the thermal lens focal length present at the very center of the pumped 

region, illustrating the most extreme thermal lensing measured in the entire experiment.  

An optical power of 38 diopters (or 2.6-cm focal length) was found.  

 Figure 7-17 shows a second phase map cross section, but this time the curve-fit used 

a larger sized data window, 1.0-mm diameter, to illustrate the thermal lensing averaged 

across the entire pumped region.  Notice the much longer thermal-lens focal length, 4.5 

cm, and the poor quality of the curve fit when the 1-mm data window was used.  

Evidently, a 1-mm diameter beam would experience significant aberration in passing 

through this pumped laser disk. 

Finally, a horizontal cross section of estimated longitudinally-averaged temperature is 

shown in Figure 7-18.  The temperature cross section plot reveals that the crystals do get 

hot, up to 65°C hotter in the center of the pumped region than at the coldest point on the 

disk, according to the raw temperature data.  As noted above, however the ‘raw’ 

temperature values contain error resulting from interferometer tilt. With the appropriate 

baseline temperature calculated by averaging the temperature around the edges of the 

temperature map, the peak temperature difference was approximately 46 °C. 
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Figure 7-14.  Interference Pattern and Resulting ‘Wrapped Phase’ Estimate for 
Experiment Case 1:  1-mm Cr2+:ZnSe Disk pumped by a 5 W, 0.4-mm Radius 4th 

Order Super-Gaussian Beam. 
This set of plots shows an image on the left of an interference pattern in 2.05-µm light 
captured by a PV-320 camera, and the resulting wrapped phase estimate constrained to lie 
on the interval [0,2π].  Note the high contrast fringes, and also the presence of phase 
discontinuities at small damage sites. 

 

Figure 7-15.  ‘Unwrapped’ Phase Estimate, Experiment Case 1 
This plot is for the 1-mm disk, pumped with 5-W CW in 0.4-mm radius.  This is the most 
extreme phase curvature measured in this experiment, corresponding to the shortest focal 
length thermal lens. 
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Figure 7-16.  Measured Thermal Lensing in 1-mm Disk, Case 1, 0.5-mm Curve Fit 
This plot shows a horizontal cross section of the transverse phase curvature an incident 
plane wave would receive after passing twice through the disk. Pumping is 5-W CW in a 
0.4-mm radius beam.  The curve fit with 0.5-mm data window results in 2.6-cm thermal 
lens focal length. Notice that the curve fit is better for the center than at the edges of the 
pumped region. 

 

Figure 7-17.  Measured Thermal lensing in 1-mm Disk, Case 1, 1-mm Curve Fit 
This plot shows the same thing as Figure 7-17, just with a 1-mm data window for the 
curve fit.  Notice that the curve fit is not good at the center, but isn’t bad for most of the 
pumped region area.  A thermal lens focal length of 4.1 cm was estimated. 
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Figure 7-18.  Cross Section of (Z-averaged) Temperature Distribution in 1-mm 
Cr2+:ZnSe Disk 1:  5-W Pumping in a 0.4-mm Beam Radius 

This is an estimate of longitudinally averaged temperature obtained from the phase 
curvature data (using 70x10-6 as the dn/dT value for Cr2+:ZnSe) 
 

The results of the thermal characterization experiment are summarized in the table 

and plots below.  The results are presented in terms of thermal lens power (in diopters) 

and maximum (longitudinally averaged) disk temperature as a function of pump power.  

To make Table 7-4, the maximum temperatures and average thermal lens powers (1/focal 

length) for each pump power level of each case were plotted vs. pump power.  Lines were 

fit to the plots, to estimate the dependence of the quantities of interest on the pump 

power.  A linear dependence was assumed for peak temperature and thermal lens power, 

as would be expected, and was mostly supported by the plots, Figure 7-19, Figure 7-20, 

and Figure 7-21. 
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Figure 7-19.  Measured Thermal Lens Power in Pumped Cr2+:ZnSe Disks,                                   
0.5-mm Data Window Used in Curve Fitting 

Table 7-4. Thermal Lensing and Max. (Z-Avg.) Temperature in Cr2+:ZnSe Disks 
 
Experiment Case: 1 2 3 4 5 
Pumping: (CW or Q-switched) 
                (Radius)  

CW 
0.41 mm

CW 
0.45 mm

Q-Sw 
0.45 mm

Q-Sw 
0.6 mm 

Q-Sw  
0.5 mm 

Disk Thickness: 1 mm 0.5 mm 1 mm 0.5 mm 1 mm 
Lens power, 1.0-mm curve-fit  
(m-1/W) 

4.24 1.90 3.66 0.81 3.10 

Lens power, 0.5-mm curve-fit  
(m-1/W) 

6.95 3.32 5.47 1.13 4.11 

Max long. avg. temp rise  
(°C/W) 

9.1 8.12 8.2 3.9 7.4 
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Figure 7-20.  Measured Thermal Lens Power in Pumped Cr2+:ZnSe Disks,                                   
1.0-mm Data Window Used in Curve Fitting 
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Figure 7-21.  Peak (Z-Avg.) Temperature in Pumped Cr2+:ZnSe Disks 
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7.2.6 Interpretation of Results 

.  Results of the thermal characterization experiment suggest the following trends: 

1. The thermal lens power and peak temperature in the disks were indeed 

approximately linearly dependent on pump power, at least under the conditions 

used in this experiment. 

2. It took only a few watts of incident pump power to raise the average 

temperatures in the Cr2+:ZnSe disks to the point where nonradiative relaxation 

becomes significant.   The peak z-averaged temperature in the disks increased 

approximately 8 K per watt of pump power for 0.4-mm radius pumping.  With a 293 

K heat sink temperature, 5 watts of input power yielded a temperature of 

approximately 333 K in the disks – hot enough for nonradiative relaxation to lower 

the laser gain by ~30 %.  The reason why the temperature increase per watt of pump 

power is so high is not known.  To solve this puzzle, two unknown quantities need to 

be measured:  temperature profiles of each disk while lasing, and the thermal 

resistance of the boundary between each  disk and its heat sink.  

3. The 0.5-mm disk exhibited less than half the thermal lensing seen in the 1.0-mm 

disk, but had similar values of peak temperature. 

4.  CW pumping produced stronger thermal lensing than Q-switched pumping.  It 

is thought that bleaching of the Cr2+ absorption during Q-switched pumping reduced 

thermal lensing by flattening the absorbed power distribution and increasing the size 

of the pumped region.  This can happen because the Cr2+:ZnSe disk can only absorb a 

finite amount of pulse energy per unit volume for a short pulse.  If there is more 
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energy in the center of the transverse energy distribution of the pump pulse than can 

be absorbed in the Cr2+, it just passes through.  The absorbed power distribution will 

be ‘clipped’ at some maximum value, which will tend to flatten the absorbed power 

profile.   

5. The thermal lensing considered over the entire pumped region as a whole was 

significantly aberrated, as indicated by the approximate factor of 1.5 change in 

calculated thermal lens powers produced by using the two different-sized data 

windows for the curve-fitting procedure.  If there were no aberration, changing data 

window size would have no effect on estimated thermal lens power. The variation in 

calculated thermal lens power was largest (a factor of 1.7) in the CW-pumped cases 

and smallest (a factor of 1.3) in the Q-switched, fiber-pumped 1-mm disk. 

The accuracy of this experiment is somewhat difficult to quantify, as there are many 

potential sources of error, such as interferometer aberration, damaged spots on the 

crystals, curve-fitting errors, and drift in pump laser power and beam parameters.  To 

place some bounds on the experimental error, the experiment was repeated for a mirror of 

known radius of curvature.  The phase unwrapping method identified the 10-cm radius of 

curvature with an accuracy of at least 15%, and detected about a 2-meter residual 

erroneous curvature on a flat reference mirror.  Based upon these results, the likely 

overall accuracy of thermal lensing and temperature estimates is no worse than 20%.  It 

appeared that aberrations in the interferometer such as astigmatic probe beams, tilt, and 

spherical aberration are to blame for the errors, as they were present in some form for all 

of the optics and crystals tested.  Even with the error, this interferometric technique was 
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by far more informative and useful than other techniques that could be used, such as razor 

blade scanning or measuring far-field spot size. 

7.3 Comparison of Modeling and Experimental Results 

The thermal lensing modeling compared surprisingly well with the experimental 

results, with both revealing the same trends. Both modeling and experiment showed a 

linear relationship between temperature and thermal lens power as a function of absorbed 

pump power.  Temperature profiles and thermal lens powers were comparable for a given 

disk, pump beam radius, and input power level, within a factor of 2.  The modeled results 

showed higher thermal lensing and peak temperatures in the disks, but the models also 

assumed that all the input power was converted to heat (no fluorescence). The 11 K 

temperature rise per watt of pump power predicted by the model (for 100% heat load) 

makes the 8 K temperature rise per watt of pump power found in the experiment 

correspond to a 75% heat load.  This is a bit high, 50%-60% being more reasonable, but 

within experimental error margins.  Reducing the disk thickness produced the anticipated 

reduction in thermal lensing without significant changes in either peak temperature or the 

average transverse temperature distribution in the disks.  Experimentally measured 

thermal lensing showed the same kind of aberration found in the modeled thermal 

lensing.  The aberration was significant for 0.4-mm radius Gaussian pumping of the 1-

mm disk, no surprise considering the results of the laser experiments in Chapter 0.  

Overall, the thermal modeling was able to capture the basic trends needed for laser 

resonator design tradeoff analyses, and the  predicted temperature profiles agreed fairly 

well with the experimental results.  Modeled results, however, may be no more accurate 
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than a factor of two, as there are several optical and thermal parameters involved with 

real Cr2+:ZnSe laser disks which are poorly known, difficult to measure and therefore 

cannot be represented accurately in the thermal models. 
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8 Conclusion 
 
 

This chapter presents a summary of the salient findings of this research, draws overall 

conclusions as to overall feasibility of high power Cr2+ lasers, and presents 

recommendations for future work in Cr2+ laser power scaling. 

8.1 Research Summary 

Cr2+ materials were shown to be suitable as lasers in the 5-W level, but material 

properties rigidly constrain laser design. Background research and material 

characterization experiments showed that the Cr2+:II-VI laser materials have potentially 

very efficient quasi 4-level laser dynamics, can handle at least as absorbed power density 

as the YLF used in the 15-W pump laser without thermal fracture, and can be tuned 

perhaps as much as 1000-nm in a suitably broadband resonator.  However material 

properties made power scaling difficult, especially for the limited 15-W pump laser 

power available, due to the high dn/dT of ~70x10-6, the Cr2+ doping density limitation of 

5x1018-5x1019 cm-3, and the onset of significant non-radiative relaxation at room 

temperature.  Of the three Cr2+ materials examined, Cr2+:ZnSe, Cr2+:CdMnTe, and 

Cr2+:CdSe, the Cr2+:ZnSe proved most promising for power scaling, due to its high Cr2+ 

doping density of 2-5x1019 cm-3 and good thermal conductivity of 18 W/mK. Choice of 

this material precluded any demonstration of high power output at wavelengths longer  

than 3 µm, but was necessary given time constraints and the properties of available laser 

materials. Available pump laser power and Cr2+ material properties pointed to the disk 

laser as the most feasible configuration.  The design was based upon a highly doped, thin 
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Cr2+:ZnSe disk, a 1.89-µm Tm:YLF pump laser, multi-pass pumping producing a 1-mm 

diameter pumped spot size, and a simple high-Q standing-wave resonator.  

Cr2+:ZnSe disks with at least 1019 cm-3 Cr2+ doping and thickness of 1 mm or 0.5 mm 

were obtained, coated, and mounted directly on water-cooled heat sinks. Disk coating 

pushed the limits of mid-IR coating technology, but did indeed result in low loss, 

reasonably high damage threshold coatings. Loss was < 5% in the 1-mm disk and < 3% 

in the 0.5-mm disk, low enough for efficient laser operation.  Two disk mounting 

techniques were tried, solder and epoxy, with the solder proving more satisfactory as it 

prevented disk warpage, but was also a more risky operation.  Both disks withstood non-

lasing absorbed power densities up to 10 kW/cm3 without thermal fracture, well beyond 

the level at which YLF in the pump laser would fracture under non-lasing conditions.   

Once mounted, both disks produced efficient 10-kHz pulsed laser operation in a 

simple, 8-cm long multi-mode laser cavity with 10-cmcc, 90%+ reflectivity output mirror 

and a 0.9-mm diameter pumped spot, with the best performance being 47% incident 

power efficiency demonstrated at 4.3 W of 2.5-µm output. The disk laser experiments 

showed that over 4-W average power could be obtained at 2.5 µm from a Cr2+:ZnSe disk 

laser using a 15-W 2-µm pump source and at least 8-pass.   

Unfortunately, the reduction of thermal lensing through the use of thin disks did not 

fulfill the expectations of the initial design, resulting in disappointing CW performance 

overall, and disappointing pulsed performance in any cavity but a short multi-mode 

configuration using a 10-cmcc output mirror. The original resonator design based upon 

weak thermal lensing and consisting of a 50-cmcc output coupler and 25-cm cavity 
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length did not work at all.  Even the short-cavity multi-mode backup design for 

conditions of strong thermal lensing did not achieve good CW performance, despite its 

success for pulsed laser operation. The best CW performance was 1.4 W in a one-time 

demonstration from the 0.5-mm disk (which subsequently dimpled at that spot– a 

casualty of the epoxy mounting method). The 1-mm disk never lased CW at all, though it 

escaped CW damage.   

The mediocre efficiency was not predicted by the simple qualitative cavity stability 

and mode-coupling analysis, even when thermal lensing was accounted for.  Later 

thermal lensing modeling and measurement, along with a specially designed mode-

matching experiment, provided indications that the problem was likely aberration in the 

thermal lens as much as the lensing itself. Both the lensing and the aberration were much 

stronger than originally anticipated and could not be ignored. 

The discovery of possible thermal aberration precipitated an exhaustive 

characterization of thermal lensing in the laser disks using both finite-element models and 

phase-shifting interferometry.  It was found that the 16-pass pumping system did a great 

job of efficiently delivering pump power to the Cr2+:ZnSe disks, producing 90%-95% 

absorption efficiency in less than a 1-mm diameter spot on the disks.  The absorbed 

power distribution, however, was had too much radial variation to allow the thermal lens 

reduction that is the hallmark and basic requirement of the laser design, and strong, 

aberrated thermal lensing persisted.  

The absorbed power distribution in the laser disks was characterized by a so-called 

super-Gaussian function of order 4 with radius of ~0.45 mm.  An attempt was made to 
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flatten the absorbed power distribution by running the pump laser through a 200-µm core, 

0.22 NA optical fiber.  This did not result in an appreciable change in absorbed power 

distribution, though the fiber did effectively isolate the pump laser, eliminating the need 

for a Faraday isolator with its 15% loss in the pumping system.  Success with this 

technique has been reported in the literature, and it might have worked in this experiment 

had a larger core fiber, or a larger pump spot size been used. 

The absorbed power distribution produced in the laser disks by the 16-pass pumping 

system generated thermal lens power (for light traveling through the disk twice) in the 

range of 6 diopters per watt of absorbed pump power for the 1-mm disk, and a bit less 

than half that for the 0.5-mm disk for CW excitation. The temperature-induced optical 

path difference in the disks was found to approximate the absorbed power distribution in 

the center of the pumped spot, but to taper off more slowly than the absorbed power 

distribution at the edges.  This resulted in aberrated thermal lensing with overall focal 

length measured around the rim of the gain region being significantly longer than the 

focal length measured in the center of the gain region.  Disappointing laser efficiencies 

were attributed to this phenomenon. 

The peak longitudinally-averaged temperatures measured in the disks were 

approximately 8 K per watt of pump power at the hottest spot. When compared to the 

modeling results of 11 K per watt of absorbed pump power (which assumed 100% heat 

loading), a heat load estimate of 75% was obtained. This was high, but not unreasonable 

given the known non-radiative relaxation processes that occur in the disks.  For instance, 

the 1-mm disk was estimated to have a 60% nonlasing heat load at room temperature, 
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given its 15% overall radiative heat load and 50% quenched fluorescence lifetime of 4 µs.  

The difference between the modeled and measured values is within the experimental 

uncertainty of these experiments.  Lasing heat load, as previously mentioned, was not 

measured in this experiment due to the lack of appropriate optics, but would likely be 

substantially less than in the non-lasing case, perhaps as low as 30% of the absorbed 

pump power.  This would suggest maximum temperature increases of ~4 K per watt 

under lasing conditions.  The laser producing 4-W output with 10-W pumping would 

therefore have experienced peak z-averaged temperatures in the laser disk of up to 333 K. 

8.2 Feasibility of High Power Cr2+ Lasers  

In light of this research, it appears that Cr2+ lasers with outputs in excess of 5 W are 

feasible, but many simultaneous design constraints that must be satisfied for acceptable 

laser operation.  Although it seems obvious, a first requirement is an affordable pump 

source with ~2-3 times more power than the desired Cr2+ laser output power. Only 

recently have ~40-W 1.9-µm lasers become available, and most of those are fiber lasers 

capable of only CW operation.  Nicely packaged pulsed high power 1.9-µm lasers are 

still hard to come by.   

The Cr2+:ZnSe laser material itself appears to handle the power density and high 

(multiple-passed) pump intensity well, which is promising for power scaling to 10 W or 

higher.  The intrinsic loss in the laser material is low enough for disk-type samples at 

least to achieve high laser efficiency in high-Q laser cavities.  Pump absorption should 

not be a problem, as long as the correct pump wavelength and multiple-pass pumping are 
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used.  The effects of thermally induced optical distortion, however, are strong enough to 

dominate Cr2+ laser cavity dynamics if any absorbed pump power non-uniformity exists.   

Other issues such as non-radiative relaxation, Cr2+ bleaching, and damage appear 

secondary in comparison, and indeed could be dealt with more easily if the thermally 

induced distortion were not present. The primary obstacle to further power scaling is thus 

the optical distortion caused by radially non-uniform temperature profiles in the Cr2+ 

laser materials, a problem expected to affect all Cr2+:II-VI materials, and be worse for II-

VI host materials with lower thermal conductivity, such as CdSe and CdMnTe. 

8.3 Recommendations 

Despite many different experimental difficulties, the only insurmountable in this 

power scaling research were the thermally induced optical distortion in the Cr2+ laser 

disks and the lower than expected power of the pump source.  The distortion was caused 

by a transverse temperature distribution in the laser material that produced a non-

spherical optical path length difference distribution that could not be compensated for by 

spherical optics.  The pump source power limitation resulted from limited budget and 

inadequate optical coating damage tolerances.  Given that the pump source power will be 

determined by budget and availability, further Cr2+ research should focus on techniques 

to mitigate thermal lensing or thermal lens aberration. This will likely produce the most 

return for the effort expended, and should require neither an increase in pump power, nor 

abandonment of the disk laser concept..  Specific research recommendations are 

described below. 
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8.3.1 Use Radially-Uniform Pumping in Cr2+ Materials 

For the disk laser design described in this research, it is recommended that the 

pumping system be altered to produce a radially-uniform absorbed power distribution.  

The thermal modeling indicated that such a distribution will reduce thermal lens power 

and significantly reduce aberration relative to the results reported here.  The original disk 

laser design called for this, but it was not achieved by the pumping system  

A localized uniform absorbed power distribution equates to pumping by a true ‘top-

hat’ beam.  This can be achieved in principle by forcing the pump laser to produce one 

using a graded reflectivity cavity mirror, by using a commercially available holographic 

transverse ‘mode converter,’ or by running the pump beam through a 1-mm diameter rod 

waveguide. For the current 16-pass optical system, increasing the beam diameter to ~1.5 

mm might also yield considerable improvement, although more pump power would be 

needed.  It is worth noting that modeling suggests the combination of top-hat pumping, 

1.5-mm beam diameter, and 0.25-mm disk thickness should result in negligible thermal 

lensing, ~2-m double-pass focal length for a 5-W heat load. 

8.3.2 Improve Cr2+:ZnSe to Obtain Working 0.25-mm disks 

In parallel with improvements in pump intensity distribution, it is recommended that 

Cr2+ materials research be conducted to produce usable 0.25-mm disks.  One approach is 

to experiment with processing techniques to reduce or eliminate the need to polish the 

surfaces of the Cr2+:II-VI samples after the doping run.   It would also be invaluable to 

determine why nonradiative relaxation becomes significant at Cr2+ concentrations as low 

as 1019 cm-3 and how it might be prevented to exploit higher Cr2+ doping.  
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8.3.3   Modify The Disk Laser Design 

There is a guaranteed way to eliminate thermal lensing: ensure no radial temperature 

gradients occur at all in the laser material. This has proven difficult but might be possible 

with two simple modifications to the disk laser design.  

One modification, admittedly speculative, involves placing a heating element on the 

input face of the disk, with a hole in it where the pump and resonated light travel through.  

The inevitable radial cooling that occurs during pumping a large diameter disk with a 

small pump beam could be dynamically compensated by controlling the temperature of 

the heating element. This works even for thick disks, and could be implemented on the 

existing disk laser design fairly easily.  At a 5-W optical heat load (expected at 17-W 

pumping while the laser is running), a maximum heating element intensity of ~600 

W/cm2 would be required to match the optical heat load.  This results in a modest 

requirement of 55 W for a 5-mm diameter heating element with 1.2-mm diameter central 

hole.  If the overall cooling capacity of the system allows, thermo-electric coolers could 

be used on both sides of the disk as combined heating and cooling elements to maintain 

positive control over both absolute disk temperature and temperature gradients. This 

would be the ideal way to cool the Cr2+ laser material down below room temperature and 

maintain temperature with the least amount of difficulty. 

A second modification is to use the top-hat pump beam, and a disk with diameter no 

larger than that of the beam.  If the heat transfer through the edge of the disk is negligible, 

there will be in theory no radial cooling and thus no radial temperature gradient.  Thermal 

modeling indicates that simply exposing the disk edges to still air would be effective.  
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Like the previous design, this configuration does not require a thin disk for optimum 

performance, and might in fact work better and be easier to implement using a short laser 

rod: a 1-2 mm diameter cylinder with 1-2 mm thickness.  As in the disk laser design, the 

laser material needs to be face cooled, but the barrel of the cylinder should be exposed to 

the air or well insulated.  Diffraction loss in a multiple-pass pump system might be a 

problem for this configuration, but more than two passes would not be needed in a 1-2 

mm disk of highly doped Cr2+:ZnSe.  On-axis pumping could be effectively used and 

there would be enough room in the laser head to put a transparent heat sink on the input 

face for additional cooling.  This technique looks especially promising for high energy 

pulsed operation, as the thick disk will have greater energy storage volume than a thin 

disk would for equivalent concentrations, and the resulting high gain laser resonator 

would tolerate the extra loss associated with the transparent heat sink.  This design could 

be combined with the previous design, by face cooling the laser rod but having a 

heating/cooling element around the barrel of the rod, providing some dynamic control of 

thermal lensing if so desired. 

A final possible improvement to the disk laser design is using transparent heat sinks 

on both faces of the laser disk. This would make the face-cooling geometry easier to 

implement, as there could be access into the laser material from both faces.  Currently, no 

material is available except diamond that could outperform the copper heat sink on the 

mirror face, and diamond absorbs in the Cr2+ emission band.  If silicon carbide optical 

material properties and availability improve slightly, however, transparent SiC heat sinks 

with an index similar to that of Cr2+:II-VI materials but with thermal conductivity greater 
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than copper could be used to face-cool both ends of the laser disk or rod. The pumping 

induced temperature changes in the Cr2+ samples would be half the magnitude as in the 

present configuration and laser design would be much more flexible.  The Cr2+ disks 

would not even need to be coated, but simply optically contacted to SiC windows that are 

coated on one face only.  This would allow Cr2+:CdSe and Cr2+:CdMnTe to be used in 

low loss normal incidence configurations even though optical coatings are not yet 

developed for these materials. 
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